Suppr超能文献

用于基于磁隧道结的真随机数发生器的材料和器件设计的人工智能引导框架。

AI-guided framework for the design of materials and devices for magnetic-tunnel-junction-based true random number generators.

作者信息

Patel Karan P, Maicke Andrew, Arzate Jared, Kwon Jaesuk, Smith J Darby, Aimone James B, Incorvia Jean Anne C, Cardwell Suma G, Schuman Catherine D

机构信息

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA.

Chandra Family Dept. of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.

出版信息

Commun Eng. 2025 Mar 11;4(1):43. doi: 10.1038/s44172-025-00376-8.

Abstract

Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future computing systems. However, designing devices with the desirable specification and performance for these applications is often found to be time-consuming and non-trivial. Here, we investigate the design and optimization of spin-orbit torque and spin transfer torque magnetic tunnel junction models as the probabilistic devices for true random number generation. We leverage reinforcement learning and evolutionary optimization to vary key device and material properties of the various device models for stochastic operation. Our artificial-intelligence-guided codesign methods generated different candidate devices capable of generating stochastic samples for a desired probability distribution, while also minimizing energy usage for the devices. This framework can also be applied to other devices and applications.

摘要

诸如磁性隧道结之类的新兴器件是未来高能效、高性能计算系统的关键。然而,为这些应用设计具有理想规格和性能的器件通常既耗时又具有挑战性。在此,我们研究自旋轨道扭矩和自旋转移扭矩磁性隧道结模型的设计与优化,将其作为用于产生真随机数的概率器件。我们利用强化学习和进化优化来改变各种器件模型的关键器件和材料属性,以实现随机操作。我们的人工智能引导协同设计方法生成了不同的候选器件,这些器件能够为所需概率分布生成随机样本,同时还能将器件的能耗降至最低。该框架也可应用于其他器件和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/297d/11897232/3f7efcd5a062/44172_2025_376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验