Suppr超能文献

基于超顺磁隧道结的节能随机计算。

Energy-efficient stochastic computing with superparamagnetic tunnel junctions.

作者信息

Daniels Matthew W, Madhavan Advait, Talatchian Philippe, Mizrahi Alice, Stiles Mark D

机构信息

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

出版信息

Phys Rev Appl. 2020;13(3). doi: https://doi.org/10.1103/physrevapplied.13.034016.

Abstract

Superparamagnetic tunnel junctions (SMTJs) have emerged as a competitive, realistic nanotechnology to support novel forms of stochastic computation in CMOS-compatible platforms. One of their applications is to generate random bitstreams suitable for use in stochastic computing implementations. We describe a method for digitally programmable bitstream generation based on pre-charge sense amplifiers. This generator is significantly more energy efficient than SMTJ-based bitstream generators that tune probabilities with spin currents and a factor of two more efficient than related CMOS-based implementations. The true randomness of this bitstream generator allows us to use them as the fundamental units of a novel neural network architecture. To take advantage of the potential savings, we codesign the algorithm with the circuit, rather than directly transcribing a classical neural network into hardware. The flexibility of the neural network mathematics allows us to adapt the network to the explicitly energy efficient choices we make at the device level. The result is a convolutional neural network design operating at ≈ 150 nJ per inference with 97 % performance on MNIST-a factor of 1.4 to 7.7 improvement in energy efficiency over comparable proposals in the recent literature.

摘要

超顺磁隧道结(SMTJ)已成为一种具有竞争力的实用纳米技术,可在与CMOS兼容的平台上支持新型随机计算形式。其应用之一是生成适用于随机计算实现的随机比特流。我们描述了一种基于预充电读出放大器的数字可编程比特流生成方法。该生成器比基于SMTJ的比特流生成器(通过自旋电流调整概率)的能源效率显著更高,比相关的基于CMOS的实现效率高出两倍。这种比特流生成器的真正随机性使我们能够将其用作新型神经网络架构的基本单元。为了利用潜在的节能优势,我们将算法与电路协同设计,而不是直接将经典神经网络转录到硬件中。神经网络数学的灵活性使我们能够使网络适应我们在器件层面做出的明确节能选择。结果是一个卷积神经网络设计,每次推理的能耗约为150 nJ,在MNIST数据集上的准确率为97%,与近期文献中的可比方案相比,能源效率提高了1.4至7.7倍。

相似文献

1
Energy-efficient stochastic computing with superparamagnetic tunnel junctions.
Phys Rev Appl. 2020;13(3). doi: https://doi.org/10.1103/physrevapplied.13.034016.
2
Closed Loop Superparamagnetic Tunnel Junctions for Reliable True Randomness and Generative Artificial Intelligence.
Nano Lett. 2025 Mar 12;25(10):3799-3806. doi: 10.1021/acs.nanolett.4c05728. Epub 2025 Feb 26.
4
Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware.
Front Neurosci. 2020 Dec 23;14:543472. doi: 10.3389/fnins.2020.543472. eCollection 2020.
6
Energy-efficient superparamagnetic Ising machine and its application to traveling salesman problems.
Nat Commun. 2024 Apr 24;15(1):3457. doi: 10.1038/s41467-024-47818-z.
7
Energy-Efficient Stochastic Signal Manipulation in Superparamagnetic Tunnel Junctions via Voltage-Controlled Exchange Coupling.
Nano Lett. 2025 Jun 11;25(23):9181-9188. doi: 10.1021/acs.nanolett.4c06306. Epub 2025 May 28.
9
Probability-Distribution-Configurable True Random Number Generators Based on Spin-Orbit Torque Magnetic Tunnel Junctions.
Adv Sci (Weinh). 2024 Jun;11(23):e2402182. doi: 10.1002/advs.202402182. Epub 2024 Apr 15.
10
An Energy-Efficient Bayesian Neural Network Implementation Using Stochastic Computing Method.
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12913-12923. doi: 10.1109/TNNLS.2023.3265533. Epub 2024 Sep 3.

引用本文的文献

1
Advantages of imperfect dice rolls over coin flips for random number generation.
Sci Rep. 2025 Apr 7;15(1):11818. doi: 10.1038/s41598-025-96492-8.
2
Superior probabilistic computing using operationally stable probabilistic-bit constructed by a manganite nanowire.
Natl Sci Rev. 2024 Sep 23;12(3):nwae338. doi: 10.1093/nsr/nwae338. eCollection 2025 Mar.
5
Hardware implementation of Bayesian network based on two-dimensional memtransistors.
Nat Commun. 2022 Sep 23;13(1):5578. doi: 10.1038/s41467-022-33053-x.
6
Entropy considerations in improved circuits for a biologically-inspired random pulse computer.
Sci Rep. 2022 Jan 7;12(1):115. doi: 10.1038/s41598-021-04177-9.
8
Noise suppression beyond the thermal limit with nanotransistor biosensors.
Sci Rep. 2020 Jul 29;10(1):12678. doi: 10.1038/s41598-020-69493-y.
9
Electrically programmable probabilistic bit anti-correlator on a nanomagnetic platform.
Sci Rep. 2020 Jul 23;10(1):12361. doi: 10.1038/s41598-020-68996-y.

本文引用的文献

1
Integer factorization using stochastic magnetic tunnel junctions.
Nature. 2019 Sep;573(7774):390-393. doi: 10.1038/s41586-019-1557-9. Epub 2019 Sep 18.
3
Neural-like computing with populations of superparamagnetic basis functions.
Nat Commun. 2018 Apr 18;9(1):1533. doi: 10.1038/s41467-018-03963-w.
4
Hardware emulation of stochastic p-bits for invertible logic.
Sci Rep. 2017 Sep 8;7(1):10994. doi: 10.1038/s41598-017-11011-8.
5
Spintronic Nanodevices for Bioinspired Computing.
Proc IEEE Inst Electr Electron Eng. 2016 Oct;104(10):2024-2039. doi: 10.1109/JPROC.2016.2597152. Epub 2016 Sep 8.
6
Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons.
Sci Rep. 2016 Jul 21;6:30039. doi: 10.1038/srep30039.
8
Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems.
IEEE Trans Biomed Circuits Syst. 2015 Apr;9(2):166-74. doi: 10.1109/TBCAS.2015.2414423. Epub 2015 Apr 14.
9
Learning understandable neural networks with nonnegative weight constraints.
IEEE Trans Neural Netw Learn Syst. 2015 Jan;26(1):62-9. doi: 10.1109/TNNLS.2014.2310059.
10
InkTag: Secure Applications on an Untrusted Operating System.
ASPLOS Proc. 2013:253-264. doi: 10.1145/2451116.2451146.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验