Suppr超能文献

基于超顺磁隧道结的节能随机计算。

Energy-efficient stochastic computing with superparamagnetic tunnel junctions.

作者信息

Daniels Matthew W, Madhavan Advait, Talatchian Philippe, Mizrahi Alice, Stiles Mark D

机构信息

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

出版信息

Phys Rev Appl. 2020;13(3). doi: https://doi.org/10.1103/physrevapplied.13.034016.

Abstract

Superparamagnetic tunnel junctions (SMTJs) have emerged as a competitive, realistic nanotechnology to support novel forms of stochastic computation in CMOS-compatible platforms. One of their applications is to generate random bitstreams suitable for use in stochastic computing implementations. We describe a method for digitally programmable bitstream generation based on pre-charge sense amplifiers. This generator is significantly more energy efficient than SMTJ-based bitstream generators that tune probabilities with spin currents and a factor of two more efficient than related CMOS-based implementations. The true randomness of this bitstream generator allows us to use them as the fundamental units of a novel neural network architecture. To take advantage of the potential savings, we codesign the algorithm with the circuit, rather than directly transcribing a classical neural network into hardware. The flexibility of the neural network mathematics allows us to adapt the network to the explicitly energy efficient choices we make at the device level. The result is a convolutional neural network design operating at ≈ 150 nJ per inference with 97 % performance on MNIST-a factor of 1.4 to 7.7 improvement in energy efficiency over comparable proposals in the recent literature.

摘要

超顺磁隧道结(SMTJ)已成为一种具有竞争力的实用纳米技术,可在与CMOS兼容的平台上支持新型随机计算形式。其应用之一是生成适用于随机计算实现的随机比特流。我们描述了一种基于预充电读出放大器的数字可编程比特流生成方法。该生成器比基于SMTJ的比特流生成器(通过自旋电流调整概率)的能源效率显著更高,比相关的基于CMOS的实现效率高出两倍。这种比特流生成器的真正随机性使我们能够将其用作新型神经网络架构的基本单元。为了利用潜在的节能优势,我们将算法与电路协同设计,而不是直接将经典神经网络转录到硬件中。神经网络数学的灵活性使我们能够使网络适应我们在器件层面做出的明确节能选择。结果是一个卷积神经网络设计,每次推理的能耗约为150 nJ,在MNIST数据集上的准确率为97%,与近期文献中的可比方案相比,能源效率提高了1.4至7.7倍。

相似文献

10
An Energy-Efficient Bayesian Neural Network Implementation Using Stochastic Computing Method.一种使用随机计算方法的节能贝叶斯神经网络实现。
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12913-12923. doi: 10.1109/TNNLS.2023.3265533. Epub 2024 Sep 3.

引用本文的文献

本文引用的文献

1
Integer factorization using stochastic magnetic tunnel junctions.使用随机磁隧道结进行整数分解。
Nature. 2019 Sep;573(7774):390-393. doi: 10.1038/s41586-019-1557-9. Epub 2019 Sep 18.
5
Spintronic Nanodevices for Bioinspired Computing.用于生物启发计算的自旋电子纳米器件。
Proc IEEE Inst Electr Electron Eng. 2016 Oct;104(10):2024-2039. doi: 10.1109/JPROC.2016.2597152. Epub 2016 Sep 8.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验