Suppr超能文献

具有孤立Co-O-Zn构型的表面羟基化单原子催化剂在调节活性物种方面具有高选择性。

Surface-hydroxylated single-atom catalyst with an isolated Co-O-Zn configuration achieves high selectivity in regulating active species.

作者信息

Zhang Zhi-Quan, Duan Pi-Jun, Bai Chang-Wei, Chen Xin-Jia, Wang Jing, Chen Fei

机构信息

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China.

出版信息

Nat Commun. 2025 Mar 11;16(1):2376. doi: 10.1038/s41467-025-57560-9.

Abstract

Single-atom catalysts (SACs) are emerging as potent tools for the selective regulation of active species, offering substantial promise for green and sustainable Fenton catalysis. However, current SACs face limitations due to the specificity of their supports, which only allow selective regulation within certain oxidant systems. This constraint makes targeted regulation across different systems challenging. In response, this study designs a SAC, termed CoSAs-ZnO, featuring surface hydroxylation and an isolated asymmetric Co-O-Zn configuration. This SAC can realize a nearly 100% selective generation of sulfate radicals (SO) and singlet oxygen (O) in peroxymonosulfate (PMS) and peracetic acid (PAA) systems, respectively. Moreover, the PMS-activated system can efficiently treat electron-deficient-dominated and refractory benzoic acid wastewater, achieving 100.0% removal in multiple consecutive pilot-scale experiments. The PAA-activated system facilitates the rapid conversion of benzyl alcohol to benzaldehyde, with a high selectivity of 89.0%. Detailed DFT calculations reveal that the surface hydroxyl groups on ZnO play a critical role in modulating the adsorption configurations of the oxidants, thus enabling the selective generation of specific active species in each system. This study provides insights into the design of SACs for multifunctional applications and paves the way for their deployment in wastewater treatment and high-value chemical conversion.

摘要

单原子催化剂(SACs)正成为选择性调控活性物种的有力工具,为绿色可持续的芬顿催化带来了巨大希望。然而,由于其载体的特异性,目前的单原子催化剂面临局限性,这使得它们仅能在特定的氧化剂体系内进行选择性调控。这种限制使得跨不同体系进行有针对性的调控具有挑战性。作为回应,本研究设计了一种名为CoSAs-ZnO的单原子催化剂,其具有表面羟基化和孤立的不对称Co-O-Zn构型。这种单原子催化剂分别在过一硫酸盐(PMS)和过氧乙酸(PAA)体系中能够实现近100%的硫酸根自由基(SO)和单线态氧(O)的选择性生成。此外,PMS活化体系能够有效处理以缺电子为主的难降解苯甲酸废水,在多次连续中试规模实验中实现了100.0%的去除率。PAA活化体系促进了苯甲醇快速转化为苯甲醛,选择性高达89.0%。详细的密度泛函理论(DFT)计算表明,ZnO表面的羟基在调节氧化剂的吸附构型方面起着关键作用,从而能够在每个体系中选择性地生成特定的活性物种。本研究为多功能应用的单原子催化剂设计提供了见解,并为其在废水处理和高价值化学转化中的应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd65/11897339/9cf47bda55b7/41467_2025_57560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验