Wu Zelin, Xiong Zhaokun, Huang Bingkun, Yao Gang, Zhan Sihui, Lai Bo
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China.
Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China.
Nat Commun. 2024 Sep 5;15(1):7775. doi: 10.1038/s41467-024-52074-2.
Actualizing efficient and sustainable environmental catalysis is essential in global water pollution control. The single-atom Fenton-like process, as a promising technique, suffers from reducing potential environmental impacts of single-atom catalysts (SACs) synthesis and modulating functionalized species beyond the first coordination shell. Herein, we devised a high-performance SAC possessing impressive Fenton-like reactivity and extended stability by constructing abundant intrinsic topological defects within carbon planes anchored with Fe-N sites. Coupling atomic Fe-N moieties and adjacent intrinsic defects provides potent synergistic interaction. Density functional theory calculations reveal that the intrinsic defects optimize the d-band electronic structure of neighboring Fe centers through long-range interactions, consequently boosting the intrinsic activity of Fe-N sites. Life cycle assessment and long-term steady operation at the device level indicate promising industrial-scale treatment capability for actual wastewater. This work emphasizes the feasibility of synergistic defect engineering for refining single-atom Fenton-like chemistry and inspires rational materials design toward sustainable environmental remediation.
实现高效且可持续的环境催化对于全球水污染控制至关重要。单原子类芬顿过程作为一种有前景的技术,在降低单原子催化剂(SACs)合成对环境的潜在影响以及调控第一配位层以外的功能化物种方面存在不足。在此,我们通过在锚定有Fe-N位点的碳平面内构建大量固有拓扑缺陷,设计出一种具有出色类芬顿反应活性和扩展稳定性的高性能SAC。耦合原子级的Fe-N部分与相邻的固有缺陷提供了强大的协同相互作用。密度泛函理论计算表明,固有缺陷通过长程相互作用优化了相邻Fe中心的d带电子结构,从而提高了Fe-N位点的固有活性。生命周期评估以及在设备层面的长期稳定运行表明,对于实际废水具有可观的工业规模处理能力。这项工作强调了协同缺陷工程用于优化单原子类芬顿化学的可行性,并激发了朝着可持续环境修复方向进行合理材料设计的灵感。