O'Jeanson Amaury, Nielsen Elisabet I, Friberg Lena E
Department of Pharmacy, Uppsala University, Uppsala, Sweden.
JAC Antimicrob Resist. 2025 Mar 11;7(2):dlaf036. doi: 10.1093/jacamr/dlaf036. eCollection 2025 Apr.
The emergence of β-lactamase-producing bacteria limits the effectiveness of β-lactam (BL) antibiotics, and the combination with a β-lactamase inhibitor (BLI) aims to counteract this resistance. However, existing guidelines primarily focus on optimizing the dosing of BLs and do not adequately address the interaction between BLs and BLIs, leading to uncertain pharmacokinetic/pharmacodynamic (PK/PD) targets and potentially suboptimal dosing strategies.
To investigate optimal PK/PD targets and dosing strategies for avibactam (BLI) combined with ceftazidime (BL) using mechanism-based PKPD models.
PK models for ceftazidime and avibactam were integrated with mechanism-based PKPD models for Gram-negative bacteria. Simulations explored dose regimens in mice and humans, evaluating PK/PD indices and computing the PTA for diverse dosing strategies and infusion modes.
AUC/MIC was the most predictive index for avibactam against Enterobacteriaceae in both mice and humans, regardless of infusion mode. Against , > C predicted efficacy in mice, while AUC/MIC and Cmax/MIC were more predictive in humans, particularly for continuous infusion regimens. Higher PTAs were achieved with increased avibactam doses relative to ceftazidime, particularly with 1:1 and 2:1 ceftazidime:avibactam ratios. Continuous infusion improved PTA against but had limited impact on Enterobacteriaceae.
The PK/PD indices predictive of avibactam efficacy varied by species (mice and humans), bacterial strains, and mode of infusion. Dosing simulations suggest that increasing avibactam relative to ceftazidime and using continuous infusion regimens may enhance bacterial killing. These findings highlight the importance of refining dosing strategies for both components of the combination therapy.
产β-内酰胺酶细菌的出现限制了β-内酰胺(BL)类抗生素的有效性,与β-内酰胺酶抑制剂(BLI)联合使用旨在对抗这种耐药性。然而,现有指南主要侧重于优化BL类药物的给药剂量,并未充分解决BL类药物与BLI之间的相互作用,导致药代动力学/药效学(PK/PD)目标不明确,给药策略可能次优。
使用基于机制的PKPD模型研究阿维巴坦(BLI)与头孢他啶(BL)联合使用的最佳PK/PD目标和给药策略。
将头孢他啶和阿维巴坦的PK模型与革兰氏阴性菌的基于机制的PKPD模型相结合。模拟研究了小鼠和人类的给药方案,评估PK/PD指标,并计算不同给药策略和输注模式的累积反应分数(PTA)。
无论输注模式如何,AUC/MIC是阿维巴坦对小鼠和人类肠杆菌科细菌最具预测性的指标。对于铜绿假单胞菌,在小鼠中Cmax/MIC > C预测疗效,而在人类中AUC/MIC和Cmax/MIC更具预测性,特别是对于持续输注方案。相对于头孢他啶增加阿维巴坦剂量可获得更高的PTA,特别是头孢他啶:阿维巴坦比例为1:1和2:1时。持续输注提高了对铜绿假单胞菌的PTA,但对肠杆菌科细菌的影响有限。
预测阿维巴坦疗效的PK/PD指标因物种(小鼠和人类)、细菌菌株和输注模式而异。给药模拟表明,相对于头孢他啶增加阿维巴坦剂量并采用持续输注方案可能增强细菌杀灭作用。这些发现凸显了优化联合治疗两种成分给药策略的重要性。