Suppr超能文献

卵巢力学生物学:理解力学与卵泡发育之间的相互作用

Ovarian Mechanobiology: Understanding the Interplay Between Mechanics and Follicular Development.

作者信息

Wang Haiyang, Yang Liuqing

机构信息

Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.

NUS Bia-Echo Asia Centre of Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.

出版信息

Cells. 2025 Feb 28;14(5):355. doi: 10.3390/cells14050355.

Abstract

The ovary is a dynamic organ where mechanical forces profoundly regulate follicular development, oocyte maturation, and overall reproductive function. These forces, originating from the extracellular matrix (ECM), granulosa and theca cells, and ovarian stroma, influence cellular behavior through mechanotransduction, translating mechanical stimuli into biochemical responses. This review explores the intricate interplay between mechanical cues and ovarian biology, focusing on key mechanosensitive pathways such as Hippo signaling, the PI3K/AKT pathway, and cytoskeletal remodeling, which govern follicular dormancy, activation, and growth. Additionally, it examines how ovarian aging disrupts the mechanical microenvironment, with ECM stiffening and altered mechanotransduction contributing to a decline in ovarian reserve and reproductive potential. Emerging technologies, including 3D culture systems and organ-on-chip platforms, are highlighted for their ability to replicate the ovarian microenvironment and advance drug discovery and therapeutic interventions. By integrating mechanobiological principles, this review aims to enhance our understanding of ovarian function and provide new strategies for preserving fertility and combating infertility.

摘要

卵巢是一个动态器官,机械力在其中深刻调节卵泡发育、卵母细胞成熟及整体生殖功能。这些力源自细胞外基质(ECM)、颗粒细胞和卵泡膜细胞以及卵巢基质,通过机械转导影响细胞行为,即将机械刺激转化为生化反应。本综述探讨了机械信号与卵巢生物学之间的复杂相互作用,重点关注关键的机械敏感通路,如Hippo信号通路、PI3K/AKT通路和细胞骨架重塑,这些通路控制卵泡的休眠、激活和生长。此外,还研究了卵巢衰老如何破坏机械微环境,ECM硬化和机械转导改变导致卵巢储备和生殖潜能下降。强调了包括三维培养系统和芯片器官平台在内的新兴技术,因其能够复制卵巢微环境并推进药物发现和治疗干预。通过整合力学生物学原理,本综述旨在增进我们对卵巢功能的理解,并为保护生育能力和对抗不孕症提供新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ced/11898978/afdd2eca30b8/cells-14-00355-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验