Yan Jiayin, Yang Tian, Ma Siyuan, Li Danfeng, Hu Cheng, Tan Jiali
Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China.
J Nanobiotechnology. 2025 Mar 12;23(1):208. doi: 10.1186/s12951-025-03178-4.
Periodontitis is the leading cause of tooth loss in adults due to progressive bone destruction, which is closely related to the dysfunction of bone mesenchymal stem cells (BMSCs). Existing evidence suggests that mitochondrial disorders are associated with periodontitis. However, whether mitochondrial dysregulation contributes to the osteogenic impairment of BMSCs and the underlying mechanisms remain unclear. Macrophages have been shown to communicate extensively with BMSCs in periodontitis. Recent studies have reported a novel manner of cellular communication in which mitochondria-rich extracellular vesicles(MEVs) transfer mitochondria from parent cells to recipient cells, playing a role in both physiological and pathological conditions. Therefore, we aimed to investigate the role of MEVs in orchestrating the crosstalk between macrophages and BMSCs in periodontitis to formulate management strategies for bone loss.
Our results revealed that macrophages underwent significant mitochondrial dysfunction and inflammation in periodontitis and that MEVs derived from these macrophages played a role in alveolar bone destruction. Furthermore, cell imaging showed that inflammatory macrophages packaged numerous damaged mitochondria into MEVs, and the entry of these impaired mitochondria into BMSCs disrupted mitochondrial dynamics and hindered donut-shaped mitochondria formation, leading to osteogenic dysfunction. Proteomic analysis revealed that the proteins enriched in macrophage-derived MEVs were largely related to mitochondria and the formation and transport of vesicles. Additionally, we found that MEVs from macrophages significantly increased lipocalin 2 (LCN2) in BMSCs in periodontitis and that LCN2 perturbed mitochondrial morphological changes in BMSCs by inducing the degradation of OMA1 and accumulation of OPA1, resulting in osteogenesis impairment in BMSCs. Inhibition of LCN2 rescued the osteogenic dysfunction of BMSCs and alveolar bone loss in periodontitis.
The transfer of mitochondria to BMSCs via MEVs exacerbates alveolar bone resorption through LCN2/OMA1/OPA1 signaling in periodontitis. Inhibition of LCN2 alleviates inflammatory bone loss, suggesting a promising therapeutic strategy for periodontitis.
由于进行性骨破坏,牙周炎是成年人牙齿缺失的主要原因,这与骨间充质干细胞(BMSCs)功能障碍密切相关。现有证据表明,线粒体功能紊乱与牙周炎有关。然而,线粒体失调是否导致BMSCs成骨功能受损及其潜在机制仍不清楚。巨噬细胞已被证明在牙周炎中与BMSCs广泛交流。最近的研究报道了一种新的细胞通讯方式,即富含线粒体的细胞外囊泡(MEVs)将线粒体从亲代细胞转移到受体细胞,在生理和病理条件下均发挥作用。因此,我们旨在研究MEVs在牙周炎中协调巨噬细胞与BMSCs之间相互作用的作用,以制定骨质流失的管理策略。
我们的结果显示,在牙周炎中巨噬细胞发生了显著的线粒体功能障碍和炎症,并且来源于这些巨噬细胞的MEVs在牙槽骨破坏中起作用。此外,细胞成像显示,炎性巨噬细胞将大量受损线粒体包装到MEVs中,这些受损线粒体进入BMSCs会破坏线粒体动力学并阻碍环形线粒体的形成,导致成骨功能障碍。蛋白质组学分析显示,巨噬细胞来源的MEVs中富集的蛋白质主要与线粒体以及囊泡的形成和运输有关。此外,我们发现来自巨噬细胞的MEVs显著增加了牙周炎中BMSCs中的脂质运载蛋白2(LCN2),并且LCN2通过诱导OMA1的降解和OPA1的积累扰乱了BMSCs中的线粒体形态变化,导致BMSCs成骨受损。抑制LCN2可挽救牙周炎中BMSCs的成骨功能障碍和牙槽骨丢失。
在牙周炎中,通过MEVs将线粒体转移到BMSCs会通过LCN2/OMA1/OPA1信号通路加剧牙槽骨吸收。抑制LCN2可减轻炎性骨质流失,提示这是一种很有前景的牙周炎治疗策略。