Xu Jiatong, Cai Xiaoxuan, Huang Junyang, Huang Hsi-Yuan, Wang Yong-Fei, Ji Xiang, Huang Yuxin, Ni Jie, Zuo Huali, Li Shangfu, Lin Yang-Chi-Dung, Huang Hsien-Da
School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
Int J Mol Sci. 2025 Feb 23;26(5):1916. doi: 10.3390/ijms26051916.
Triple-negative breast cancer (TNBC) poses a major clinical challenge due to its aggressive progression and limited treatment options, making early diagnosis and prognosis critical. MicroRNAs (miRNAs) are crucial post-transcriptional regulators that influence gene expression. In this study, we unveil novel miRNA-mRNA interactions and introduce a prognostic model based on miRNA-target interaction (MTI), integrating miRNA-mRNA regulatory correlation inference and the machine learning method to effectively predict the survival outcomes in TNBC cohorts. Using this method, we identified four key miRNAs (miR-181b-5p, miR-21-5p, miR-210-3p, miR-183-5p) targeting eight downstream target genes, forming a novel regulatory network of 19 validated miRNA-mRNA pairs. A prognostic model constructed based on the top 10 significant MTI pairs using random forest combination effectively classified patient survival outcomes in both TCGA and independent dataset GSE19783 cohorts, demonstrating good predictive accuracy and valuable prognostic insights for TNBC patients. Further analysis uncovered a complex network of 71 coherent feed-forward loops involving transcription factors, miRNAs, and target genes, shedding light on the mechanisms driving TNBC progression. This study underscores the importance of considering regulatory networks in cancer prognosis and provides a foundation for new therapeutic strategies aimed at improving TNBC treatment outcomes.
三阴性乳腺癌(TNBC)因其侵袭性进展和有限的治疗选择而构成重大临床挑战,因此早期诊断和预后至关重要。微小RNA(miRNA)是影响基因表达的关键转录后调节因子。在本研究中,我们揭示了新的miRNA-信使核糖核酸(mRNA)相互作用,并引入了一种基于miRNA-靶标相互作用(MTI)的预后模型,整合了miRNA-mRNA调控相关性推断和机器学习方法,以有效预测TNBC队列中的生存结果。使用这种方法,我们鉴定了靶向八个下游靶基因的四个关键miRNA(miR-181b-5p、miR-21-5p、miR-210-3p、miR-183-5p),形成了一个由19对经过验证的miRNA-mRNA组成的新型调控网络。基于前10个显著的MTI对使用随机森林组合构建的预后模型有效地对TCGA和独立数据集GSE19783队列中的患者生存结果进行了分类,显示出对TNBC患者具有良好的预测准确性和有价值的预后见解。进一步分析发现了一个由71个相干前馈环组成的复杂网络,涉及转录因子、miRNA和靶基因,揭示了驱动TNBC进展的机制。本研究强调了在癌症预后中考虑调控网络的重要性,并为旨在改善TNBC治疗结果的新治疗策略提供了基础。