Suppr超能文献

通过综合计算机模拟方法鉴定卵巢癌中的驱动基因和微小RNA

Identification of Driver Genes and miRNAs in Ovarian Cancer through an Integrated In-Silico Approach.

作者信息

Beg Anam, Parveen Rafat, Fouad Hassan, Yahia M E, Hassanein Azza S

机构信息

Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.

Applied Medical Science Department, CC, King Saud University, Riyadh 11433, Saudi Arabia.

出版信息

Biology (Basel). 2023 Jan 26;12(2):192. doi: 10.3390/biology12020192.

Abstract

Ovarian cancer is the eighth-most common cancer in women and has the highest rate of death among all gynecological malignancies in the Western world. Increasing evidence shows that miRNAs are connected to the progression of ovarian cancer. In the current study, we focus on the identification of miRNA and its associated genes that are responsible for the early prognosis of patients with ovarian cancer. The microarray dataset GSE119055 used in this study was retrieved via the publicly available GEO database by NCBI for the analysis of DEGs. The miRNA GSE119055 dataset includes six ovarian carcinoma samples along with three healthy/primary samples. In our study, DEM analysis of ovarian carcinoma and healthy subjects was performed using R Software to transform and normalize all transcriptomic data along with packages from Bioconductor. Results: We identified miRNA and its associated hub genes from the samples of ovarian cancer. We discovered the top five upregulated miRNAs (hsa-miR-130b-3p, hsa-miR-18a-5p, hsa-miR-182-5p, hsa-miR-187-3p, and hsa-miR-378a-3p) and the top five downregulated miRNAs (hsa-miR-501-3p, hsa-miR-4324, hsa-miR-500a-3p, hsa-miR-1271-5p, and hsa-miR-660-5p) from the network and their associated genes, which include seven common genes (SCN2A, BCL2, MAF, ZNF532, CADM1, ELAVL2, and ESRRG) that were considered hub genes for the downregulated network. Similarly, for upregulated miRNAs we found two hub genes (PRKACB and TAOK1).

摘要

卵巢癌是女性中第八大常见癌症,在西方世界所有妇科恶性肿瘤中死亡率最高。越来越多的证据表明,微小RNA(miRNA)与卵巢癌的进展有关。在本研究中,我们专注于鉴定负责卵巢癌患者早期预后的miRNA及其相关基因。本研究中使用的微阵列数据集GSE119055通过美国国立医学图书馆(NCBI)的公开可用基因表达综合数据库(GEO)检索,用于差异表达基因(DEG)分析。miRNA GSE119055数据集包括六个卵巢癌样本以及三个健康/原发样本。在我们的研究中,使用R软件对卵巢癌和健康受试者进行差异表达miRNA(DEM)分析,以转换和标准化所有转录组数据以及来自生物导体的软件包。结果:我们从卵巢癌样本中鉴定出miRNA及其相关的枢纽基因。我们发现了网络中上调的前五个miRNA(hsa-miR-130b-3p、hsa-miR-18a-5p、hsa-miR-182-5p、hsa-miR-187-3p和hsa-miR-378a-3p)和下调的前五个miRNA(hsa-miR-501-3p、hsa-miR-4324、hsa-miR-500a-3p、hsa-miR-1271-5p和hsa-miR-660-5p)及其相关基因,其中包括七个共同基因(SCN2A、BCL2、MAF、ZNF532、CADM1、ELAVL2和ESRRG),这些基因被认为是下调网络的枢纽基因。同样,对于上调的miRNA,我们发现了两个枢纽基因(PRKACB和TAOK1)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f7/9952540/c7e8b17fcc59/biology-12-00192-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验