Suppr超能文献

差异转录程序揭示与晚发性阿尔茨海默病相关的模块化网络重排

Differential Transcriptional Programs Reveal Modular Network Rearrangements Associated with Late-Onset Alzheimer's Disease.

作者信息

Pérez-González Alejandra Paulina, Anda-Jáuregui Guillermo de, Hernández-Lemus Enrique

机构信息

División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico.

Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado Edificio B Primer Piso, Ciudad Universitaria, Mexico City 04510, Mexico.

出版信息

Int J Mol Sci. 2025 Mar 6;26(5):2361. doi: 10.3390/ijms26052361.

Abstract

Alzheimer's disease (AD) is a complex, genetically heterogeneous disorder. The diverse phenotypes associated with AD result from interactions between genetic and environmental factors, influencing multiple biological pathways throughout disease progression. Network-based approaches offer a way to assess phenotype-specific states. In this study, we calculated key network metrics to characterize the network transcriptional structure and organization in LOAD, focusing on genes and pathways implicated in AD pathology within the dorsolateral prefrontal cortex (DLPFC). Our findings revealed disease-specific coexpression markers associated with diverse metabolic functions. Additionally, significant differences were observed at both the mesoscopic and local levels between AD and control networks, along with a restructuring of gene coexpression and biological functions into distinct transcriptional modules. These results show the molecular reorganization of the transcriptional program occurring in LOAD, highlighting specific adaptations that may contribute to or result from cellular responses to pathological stressors. Our findings may support the development of a unified model for the causal mechanisms of AD, suggesting that its diverse manifestations arise from multiple pathways working together to produce the disease's complex clinical patho-phenotype.

摘要

阿尔茨海默病(AD)是一种复杂的、基因异质性疾病。与AD相关的多种表型是由遗传和环境因素之间的相互作用导致的,这些因素在疾病进展过程中影响多个生物学途径。基于网络的方法提供了一种评估表型特异性状态的途径。在本研究中,我们计算了关键的网络指标,以表征LOAD中的网络转录结构和组织,重点关注背外侧前额叶皮质(DLPFC)中与AD病理学相关的基因和途径。我们的研究结果揭示了与多种代谢功能相关的疾病特异性共表达标记。此外,在AD网络和对照网络之间的介观和局部水平均观察到显著差异,同时基因共表达和生物学功能重组为不同的转录模块。这些结果显示了LOAD中发生的转录程序的分子重组,突出了可能导致细胞对病理应激源作出反应或由细胞对病理应激源作出反应所导致的特定适应性变化。我们的研究结果可能支持为AD的因果机制建立一个统一模型,表明其多种表现形式源于多个途径共同作用以产生该疾病复杂的临床病理表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c23/11900169/9ec524dfd7d2/ijms-26-02361-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验