Baixauli-Martín Júlia, Burguete Maria Consuelo, López-Morales Mikahela A, Castelló-Ruiz María, Aliena-Valero Alicia, Jover-Mengual Teresa, Falahatgaroshibi Dianoush, Torregrosa Germán, Salom Juan B
Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain.
Departamento de Fisiología, Universidad de Valencia, 46100 Burjassot, Spain.
Int J Mol Sci. 2025 Mar 6;26(5):2364. doi: 10.3390/ijms26052364.
In recent years, evidence of the existence of cellular senescence in the central nervous system has accumulated. In ischemic stroke, cellular senescence has been suggested as an unidentified pathophysiological mechanism, prompting research into the neuroprotective potential of senolytic drugs. This study aims to provide spatio-temporal evidence of the existence of brain senescence following ischemic stroke and to elucidate the involved pathways and cell types. We focused on the most established markers of senescence: cell cycle arrest (p16, p21); lysosomal activity (senescence-associated β-galactosidase [SA-β-gal]); the senescence-associated secretory phenotype ([SASP]; Interleukin-6 [IL-6], Interleukin-1β [IL-1β], Tumor necrosis factor [TNF]); and DNA/nuclear damage (Checkpoint kinase 1 [Chk1], Checkpoint kinase 2 [Chk2], Lamin B1 [LB1]). Male Wistar rats underwent 60 min of transient middle cerebral artery occlusion, followed by 24 h and 3, 7, and 14 days of recovery. Our results show significant increases in p16 expression, particularly in neurons and microglia/macrophages; SA-β-gal accumulation in the infarcted tissue; significant increases in SASP markers as early as 24 h after reperfusion; and significant changes in Chk1, Chk2, and LB1 at 14 days. Overall, our findings lend support to the existence of senescence after ischemic stroke in neurons and microglia/macrophages. However, there is still room to gain further insight into the role of senescence in the pathophysiology of ischemic stroke and in the implementation of successful senolytic therapy.
近年来,中枢神经系统中细胞衰老存在的证据不断积累。在缺血性卒中中,细胞衰老被认为是一种尚未明确的病理生理机制,这促使人们对衰老细胞溶解药物的神经保护潜力进行研究。本研究旨在提供缺血性卒中后大脑衰老存在的时空证据,并阐明其中涉及的途径和细胞类型。我们聚焦于最公认的衰老标志物:细胞周期停滞(p16、p21);溶酶体活性(衰老相关β-半乳糖苷酶[SA-β-gal]);衰老相关分泌表型([SASP];白细胞介素-6[IL-6]、白细胞介素-1β[IL-1β]、肿瘤坏死因子[TNF]);以及DNA/核损伤(检查点激酶1[Chk1]、检查点激酶2[Chk2]、核纤层蛋白B1[LB1])。雄性Wistar大鼠接受60分钟的大脑中动脉短暂闭塞,随后恢复24小时以及3天、7天和14天。我们的结果显示,p16表达显著增加,尤其是在神经元和小胶质细胞/巨噬细胞中;梗死组织中SA-β-gal积累;再灌注后24小时SASP标志物就显著增加;以及在14天时Chk1、Chk2和LB1发生显著变化。总体而言,我们的研究结果支持缺血性卒中后神经元和小胶质细胞/巨噬细胞中存在衰老现象。然而,在进一步深入了解衰老在缺血性卒中病理生理学中的作用以及成功实施衰老细胞溶解疗法方面仍有空间。