Suppr超能文献

用于预测CYP3A4诱导介导的药物相互作用的高性能PBPK模型:一种优化和验证的方法。

High-performance PBPK model for predicting CYP3A4 induction-mediated drug interactions: a refined and validated approach.

作者信息

Yang Cheng-Guang, Chen Tao, Si Wen-Teng, Wang An-Hai, Ren Hong-Can, Wang Li

机构信息

Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Shanghai PharmoGo Co., Ltd., Shanghai, China.

出版信息

Front Pharmacol. 2025 Feb 26;16:1521068. doi: 10.3389/fphar.2025.1521068. eCollection 2025.

Abstract

INTRODUCTION

The cytochrome P450 enzyme 3A4 (CYP3A4) mediates numerous drug-drug interactions (DDIs) by inducing the metabolism of co-administered drugs, which can result in reduced therapeutic efficacy or increased toxicity. This study developed and validated a Physiologically Based Pharmacokinetic (PBPK) model to predict CYP3A4 induction-mediated DDIs, focusing on the early stages of clinical drug development.

METHODS

The PBPK model for rifampicin, a potent CYP3A4 inducer, was developed and validated using human pharmacokinetic data. Subsequently, PBPK models for 'victim' drugs were constructed and validated. The PBPK-DDI model's predictive performance was assessed by comparing predicted area under the curve (AUC) and maximum concentration (C) ratioswith empirical data, using both the 0.5 to 2-fold criterion and theGuest criteria.

RESULTS

The rifampicin PBPK model accurately simulated human pharmacokinetic profiles. The PBPK-DDI model demonstrated high predictive accuracy for AUC ratios, with 89% of predictions within the 0.5 to 2-fold criterion and 79% meeting the Guest criteria. For Cmax ratios, an impressive 93% of predictions were within the acceptable range. The model significantly outperformed the static model, particularly in estimating DDI risks associated with CYP3A4 induction.

DISCUSSION

The PBPK-DDI model is a reliable tool for predicting CYP3A4 induction-mediated DDIs. Its high predictive accuracy, confirmed by adherence to evaluation standards, affirms its reliability for drug development and clinical pharmacology. Future refinements may further enhance its predictive value.

摘要

引言

细胞色素P450酶3A4(CYP3A4)通过诱导同时服用药物的代谢来介导众多药物相互作用(DDIs),这可能导致治疗效果降低或毒性增加。本研究开发并验证了一种基于生理的药代动力学(PBPK)模型,以预测CYP3A4诱导介导的药物相互作用,重点关注临床药物开发的早期阶段。

方法

使用人体药代动力学数据开发并验证了强力CYP3A4诱导剂利福平的PBPK模型。随后,构建并验证了“受影响”药物的PBPK模型。通过使用0.5至2倍标准和Guest标准,将预测的曲线下面积(AUC)和最大浓度(C)比值与经验数据进行比较,评估PBPK-DDI模型的预测性能。

结果

利福平PBPK模型准确模拟了人体药代动力学特征。PBPK-DDI模型对AUC比值显示出较高的预测准确性,89%的预测值在0.5至2倍标准范围内,79%符合Guest标准。对于Cmax比值,令人印象深刻的是93%的预测值在可接受范围内。该模型明显优于静态模型,特别是在估计与CYP3A4诱导相关的药物相互作用风险方面。

讨论

PBPK-DDI模型是预测CYP3A4诱导介导的药物相互作用的可靠工具。通过符合评估标准证实的高预测准确性,确认了其在药物开发和临床药理学中的可靠性。未来的改进可能会进一步提高其预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c1/11897275/d9d753fc4784/fphar-16-1521068-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验