Jiang Pin, Chen Tao, Chu Lin-Feng, Xu Ren-Peng, Gao Jin-Ting, Wang Li, Liu Qiang, Tang Lily, Wan Hong, Li Ming, Ren Hong-Can
Department of DMPK, Shanghai Medicilon Inc, Shanghai, P. R. China.
Shanghai PharmoGo Co., Ltd, Shanghai, P. R. China.
Expert Opin Drug Metab Toxicol. 2023 Jul-Dec;19(10):721-731. doi: 10.1080/17425255.2023.2263358. Epub 2023 Oct 27.
Enhancing the precision of drug-drug interaction (DDI) prediction is essential for improving drug safety and efficacy. The aim is to identify the most effective fraction metabolized by CY3A4 () for improving DDI prediction using physiologically based pharmacokinetic (PBPK) models.
The values were determined for 33 approved drugs using a human liver microsome for measurements and the ADMET Predictor software for in silico predictions. Subsequently, these values were integrated into PBPK models using the GastroPlus platform. The PBPK models, combined with a ketoconazole model, were utilized to predict AUCR (AUC/AUC), and the accuracy of these predictions was evaluated by comparison with observed AUCR.
The integration of method demonstrates superior performance compared to the in silico method and of 100% method. Under the Guest-limits criteria, the integration of achieves an accuracy of 76%, while the in silico and of 100% methods achieve accuracies of 67% and 58%, respectively.
Our study highlights the importance of data to improve the accuracy of predicting DDIs and demonstrates the promising potential of in silico in predicting DDIs.
提高药物相互作用(DDI)预测的准确性对于提高药物安全性和有效性至关重要。目的是确定细胞色素P450 3A4(CY3A4)代谢的最有效组分,以使用基于生理的药代动力学(PBPK)模型改善DDI预测。
使用人肝微粒体进行测量,并使用ADMET Predictor软件进行计算机模拟预测,测定了33种已批准药物的CY3A4值。随后,使用GastroPlus平台将这些CY3A4值整合到PBPK模型中。将PBPK模型与酮康唑模型相结合,用于预测AUCR(AUC/AUC),并通过与观察到的AUCR进行比较来评估这些预测的准确性。
与计算机模拟CY3A4方法和100%的体外方法相比,CY3A4方法的整合表现出卓越的性能。在访客限制标准下,CY3A4的整合准确率达到76%,而计算机模拟CY3A4和100%的体外方法的准确率分别为67%和58%。
我们的研究强调了CY3A4数据对于提高DDI预测准确性的重要性,并证明了计算机模拟CY3A4在预测DDI方面具有广阔的潜力。