Suppr超能文献

预测个体的词汇学习:贴近幼儿语言环境的重要性。

Predicting individual vocabulary learning: The importance of approximating toddlers' linguistic environment.

作者信息

Weber Jennifer M, Colunga Eliana

机构信息

University of Colorado Boulder, Department of Psychology and Neuroscience.

出版信息

Can J Exp Psychol. 2025 Mar;79(1):28-40. doi: 10.1037/cep0000364.

Abstract

Using network representations of the lexicon has expanded our understanding of vocabulary growth processes and vocabulary structure during early development. These models of vocabulary development have used multiple types of sources to create lexical representations. More recently, Weber and Colunga (2022) demonstrated that predictions of early vocabulary norms can be improved by using network representations based on a corpus incorporating language a young child might typically hear. The present work goes a step further by evaluating the accuracy of network representations for predicting individual children's word learning that are based on embeddings that are readily available or embeddings gathered from the same child language corpus. We predicted the specific words that individual children add to their vocabulary over time, using a longitudinal data set of 86 monolingual English-speaking toddler's changing vocabulary from 18 to 30 months of age. The toddler-based network predicted word learning more accurately than the off-the-shelf network. Further, there was an advantage for prediction methods that took into account the individual child's particular network structure rather than overall network connectivity. These results highlight the importance of tailoring representational and processing choices to the population of interest. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

使用词汇的网络表示法扩展了我们对早期发展过程中词汇增长过程和词汇结构的理解。这些词汇发展模型使用了多种类型的来源来创建词汇表示。最近,韦伯和科隆加(2022年)证明,通过使用基于包含幼儿通常会听到的语言的语料库的网络表示法,可以改进早期词汇规范的预测。目前的工作更进一步,通过评估基于现成嵌入或从同一儿童语言语料库收集的嵌入的网络表示法在预测个体儿童单词学习方面的准确性。我们使用了一个由86名18至30个月大的单语英语学步儿童不断变化的词汇组成的纵向数据集,预测了个体儿童随时间推移添加到其词汇中的具体单词。基于学步儿童的网络比现成的网络更准确地预测了单词学习。此外,考虑个体儿童特定网络结构而非整体网络连通性的预测方法具有优势。这些结果凸显了根据感兴趣的人群调整表示和处理选择的重要性。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验