Jin Mi-Jin, Yang Guang, Um Doo-Seung, Linder Jacob, Robinson Jason W A
Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.
Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.
ACS Appl Mater Interfaces. 2025 Mar 26;17(12):19026-19032. doi: 10.1021/acsami.4c20213. Epub 2025 Mar 13.
Functional oxides and hybrid structures with interfacial spin-orbit coupling and the Rashba-Edelstein effect (REE) are promising materials systems for thermal tolerance spintronic device applications. Here, we demonstrate efficient spin-to-charge conversion through enhanced interfacial spin-orbit coupling at the all-oxide interface of LaCaMnO with quasi-two-dimensional (quasi-2D) SrTiO (LCMO/STO). The quasi-2D interface is generated via oxygen vacancies at the STO surface. We obtain a spin-to-charge conversion efficiency of θ ≈ 2.32 ± 1.3 nm, most likely originating from the inverse REE, which is relatively large versus all-metallic spin-to-charge conversion materials systems. The results highlight that the LCMO/STO 2D electron gas is a potential platform for spin-based memory and transistor applications.
具有界面自旋轨道耦合和 Rashba-埃德尔斯坦效应(REE)的功能氧化物及混合结构是用于热耐受性自旋电子器件应用的很有前景的材料体系。在此,我们展示了通过在具有准二维(准 2D)SrTiO 的 LaCaMnO 的全氧化物界面处增强界面自旋轨道耦合实现的高效自旋到电荷的转换(LCMO/STO)。准 2D 界面是通过 STO 表面的氧空位产生的。我们获得了约θ ≈ 2.32 ± 1.3 nm 的自旋到电荷转换效率,最有可能源自逆 REE,与全金属自旋到电荷转换材料体系相比,该效率相对较高。结果表明,LCMO/STO 二维电子气是基于自旋的存储器和晶体管应用的潜在平台。