Suppr超能文献

程序性死亡配体1(PD-L1)、整合素α6(CD49f)、CD133循环肿瘤细胞可预测外阴癌或宫颈癌患者放化疗后的预后。

PD-L1 CD49f CD133 Circulating tumor cells predict outcome of patients with vulvar or cervical cancer after radio- and chemoradiotherapy.

作者信息

Gies Selina, Melchior Patrick, Molnar Istvan, Olmes Gregor, Stroeder Russalina, Tänzer Tanja, Pohlers Maike, Schäfer Moritz, Theobald Laura, Sester Martina, Solomayer Erich Franz, Walch-Rückheim Barbara

机构信息

Center of Human and Molecular Biology (ZHMB) Kirrbergerstraße, Institute of Virology, Saarland University, Building 47, D-66421, Homburg/Saar, Germany.

Experimental Gynaecological Oncology, Gynecology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.

出版信息

J Transl Med. 2025 Mar 13;23(1):321. doi: 10.1186/s12967-025-06277-w.

Abstract

BACKGROUND

Monitoring individual therapy responses of patients with cancer represents a major clinical challenge providing the basis to early identify metastases and cancer relapse. We previously demonstrated that radio- or chemoradiotherapy affects the systemic cellular milieu of patients with vulvar or cervical cancer and creates individual post-therapeutic environments associated with cancer relapse. Circulating tumor cells (CTCs) in the systemic milieu are related to metastases and relapse; however, their quantitative and phenotypic characteristics during therapy of patients with vulvar and cervical cancer are still unknown.

METHODS

In this prospective, longitudinal study, we verified the presence of CTCs via immunofluorescence and systemically characterized CTCs by flow cytometry from the blood of 40 patients with vulvar and 115 patients with cervical cancer receiving surgery, adjuvant radiotherapy (aRT), chemoradiotherapy (aCRT) or primary chemoradiotherapy (pCRT) and linked the presence of different CTC subpopulations with individual outcome of disease.

RESULTS

Pre-therapeutic cytokeratin CD45 CTC numbers significantly correlated with tumor FIGO stages, lymph node metastases and relapse. While surgery only did not significantly alter CTC occurrence, aRT and aCRT as well as pCRT differentially decreased or increased CTCs in patients with both tumor entities compared to baseline levels. Therapy-mediated increased CTC numbers were directly linked with subsequent cancer recurrence on follow-up. Phenotypic characterization of CTCs revealed enhanced expression of the stem cell marker CD133 as well as the integrin α6 (CD49f) after aRT, aCRT and pCRT. Furthermore, the aRT, aCRT and pCRT cohorts exhibited increased proportions of Programmed Cell Death Protein Ligand (PD-L1) expressing cells among post-therapeutic CTCs. Notably, post-therapeutic PD-L1 CD49f CD133 numbers ≥ 5/ml in patients with vulvar cancer and ≥ 2/ml in patients with cervical cancer were associated with reduced recurrence-free survival on follow-up.

CONCLUSION

Our study unravels individual therapy-induced changes in CTC phenotypic characteristics and occurrence in the patients' blood and their association with cancer relapse. Our results may help to explain differences in the individual courses of disease of patients with vulvar and cervical cancer and suggest PD-L1, CD49f and CD133 as targets for immunotherapy in vulvar and cervical cancer.

摘要

背景

监测癌症患者的个体治疗反应是一项重大临床挑战,为早期识别转移和癌症复发提供依据。我们之前证明,放疗或放化疗会影响外阴癌或宫颈癌患者的全身细胞环境,并产生与癌症复发相关的个体治疗后环境。全身环境中的循环肿瘤细胞(CTC)与转移和复发有关;然而,在外阴癌和宫颈癌患者治疗期间,它们的定量和表型特征仍然未知。

方法

在这项前瞻性纵向研究中,我们通过免疫荧光验证了CTC的存在,并通过流式细胞术对40例外阴癌患者和115例宫颈癌患者血液中的CTC进行了系统表征,这些患者接受了手术、辅助放疗(aRT)、放化疗(aCRT)或原发放化疗(pCRT),并将不同CTC亚群的存在与个体疾病结局联系起来。

结果

治疗前细胞角蛋白CD45 CTC数量与肿瘤国际妇产科联盟(FIGO)分期、淋巴结转移和复发显著相关。虽然单纯手术并未显著改变CTC的出现情况,但与基线水平相比,aRT、aCRT以及pCRT使两种肿瘤实体患者的CTC数量有不同程度的减少或增加。治疗介导的CTC数量增加与后续随访中的癌症复发直接相关。CTC的表型特征显示,aRT、aCRT和pCRT后干细胞标志物CD133以及整合素α6(CD49f)的表达增强。此外,aRT、aCRT和pCRT队列在治疗后的CTC中表达程序性细胞死亡蛋白配体(PD-L1)的细胞比例增加。值得注意的是,外阴癌患者治疗后PD-L1 CD49f CD133数量≥5/ml,宫颈癌患者≥2/ml,与随访中无复发生存率降低相关。

结论

我们的研究揭示了个体治疗引起的患者血液中CTC表型特征和出现情况的变化及其与癌症复发的关联。我们的结果可能有助于解释外阴癌和宫颈癌患者个体病程的差异,并提示PD-L1、CD49f和CD133可作为外阴癌和宫颈癌免疫治疗的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ea/11908062/ce896c462fd3/12967_2025_6277_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验