Suppr超能文献

细胞色素P450同工酶特异性研究

Investigation of studies for cytochrome P450 isoforms specificity.

作者信息

Wei Yao, Palazzolo Luca, Ben Mariem Omar, Bianchi Davide, Laurenzi Tommaso, Guerrini Uliano, Eberini Ivano

机构信息

Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy.

出版信息

Comput Struct Biotechnol J. 2024 Aug 5;23:3090-3103. doi: 10.1016/j.csbj.2024.08.002. eCollection 2024 Dec.

Abstract

Cytochrome P450 (CYP450) enzymes comprise a highly diverse superfamily of heme-thiolate proteins that responsible for catalyzing over 90 % of enzymatic reactions associated with xenobiotic metabolism in humans. Accurately predicting whether chemicals are substrates or inhibitors of different CYP450 isoforms can aid in pre-selecting hit compounds for the drug discovery process, chemical toxicology studies, and patients treatment planning. In this work, we investigated studies on CYP450s specificity over past twenty years, categorizing these studies into structure-based and ligand-based approaches. Subsequently, we utilized 100 of the most frequently prescribed drugs to test eleven machine learning-based prediction models which were published between 2015 and 2024. We analyzed various aspects of the evaluated models, such as their datasets, algorithms, and performance. This will give readers with a comprehensive overview of these prediction models and help them choose the most suitable one to do prediction. We also provide our insights for future research trend in both structure-based and ligand-based approaches in this field.

摘要

细胞色素P450(CYP450)酶是一个高度多样化的血红素硫醇盐蛋白超家族,负责催化人类中超过90%与异源生物代谢相关的酶促反应。准确预测化学物质是否为不同CYP450同工型的底物或抑制剂,有助于在药物发现过程、化学毒理学研究和患者治疗规划中预先筛选有价值的化合物。在这项工作中,我们调查了过去二十年中关于CYP450特异性的研究,将这些研究分为基于结构和基于配体的方法。随后,我们使用100种最常用的药物来测试2015年至2024年间发表的11种基于机器学习的预测模型。我们分析了评估模型的各个方面,如它们的数据集、算法和性能。这将为读者提供这些预测模型的全面概述,并帮助他们选择最合适的模型进行预测。我们还提供了对该领域基于结构和基于配体方法未来研究趋势的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3bc/11347072/c6d4511ea5c6/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验