Suppr超能文献

深度细胞色素P450酶系:用于增强细胞色素P450活性预测的深度学习平台。

DEEPCYPs: A deep learning platform for enhanced cytochrome P450 activity prediction.

作者信息

Ai Daiqiao, Cai Hanxuan, Wei Jiajia, Zhao Duancheng, Chen Yihao, Wang Ling

机构信息

Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.

出版信息

Front Pharmacol. 2023 Apr 10;14:1099093. doi: 10.3389/fphar.2023.1099093. eCollection 2023.

Abstract

Cytochrome P450 (CYP) is a superfamily of heme-containing oxidizing enzymes involved in the metabolism of a wide range of medicines, xenobiotics, and endogenous compounds. Five of the CYPs (1A2, 2C9, 2C19, 2D6, and 3A4) are responsible for metabolizing the vast majority of approved drugs. Adverse drug-drug interactions, many of which are mediated by CYPs, are one of the important causes for the premature termination of drug development and drug withdrawal from the market. In this work, we reported in silicon classification models to predict the inhibitory activity of molecules against these five CYP isoforms using our recently developed FP-GNN deep learning method. The evaluation results showed that, to the best of our knowledge, the multi-task FP-GNN model achieved the best predictive performance with the highest average AUC (0.905), F1 (0.779), BA (0.819), and MCC (0.647) values for the test sets, even compared to advanced machine learning, deep learning, and existing models. Y-scrambling testing confirmed that the results of the multi-task FP-GNN model were not attributed to chance correlation. Furthermore, the interpretability of the multi-task FP-GNN model enables the discovery of critical structural fragments associated with CYPs inhibition. Finally, an online webserver called DEEPCYPs and its local version software were created based on the optimal multi-task FP-GNN model to detect whether compounds bear potential inhibitory activity against CYPs, thereby promoting the prediction of drug-drug interactions in clinical practice and could be used to rule out inappropriate compounds in the early stages of drug discovery and/or identify new CYPs inhibitors.

摘要

细胞色素P450(CYP)是一类含血红素的氧化酶超家族,参与多种药物、外源性物质和内源性化合物的代谢。其中五种CYP(1A2、2C9、2C19、2D6和3A4)负责代谢绝大多数已批准的药物。药物-药物相互作用不良(其中许多由CYP介导)是药物开发提前终止和药物退市的重要原因之一。在这项工作中,我们报告了基于硅的分类模型,使用我们最近开发的FP-GNN深度学习方法来预测分子对这五种CYP亚型的抑制活性。评估结果表明,据我们所知,多任务FP-GNN模型在测试集上取得了最佳预测性能,其平均AUC(0.905)、F1(0.779)、BA(0.819)和MCC(0.647)值最高,甚至与先进的机器学习、深度学习和现有模型相比也是如此。Y打乱测试证实,多任务FP-GNN模型的结果并非偶然相关。此外,多任务FP-GNN模型的可解释性有助于发现与CYP抑制相关的关键结构片段。最后,基于最优多任务FP-GNN模型创建了一个名为DEEPCYPs的在线网络服务器及其本地版本软件,以检测化合物是否具有针对CYP的潜在抑制活性,从而促进临床实践中药物-药物相互作用的预测,并可用于在药物发现的早期阶段排除不合适的化合物和/或识别新的CYP抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fd5/10123292/c99995268347/fphar-14-1099093-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验