Suppr超能文献

在巴西两个大学中心测量心理健康状况:一项队列调查方案。

Measuring Mental Health in 2 Brazilian University Centers: Protocol for a Cohort Survey.

作者信息

Di Santi Talita, Nascimento Ariana Gomes, Fukuti Pedro, Marchisio Vinnie, Araujo do Amaral Gian Carlo, Vaz Camille Figueiredo Peternella, Carrijo Luiz David Finotti, Oliveira Lilian Cristie de, Costa Luiz Octávio da, Mancini Marion Konieczniak Elisângela, Zuppi Garcia Luana Aparecida, Cabrelon Jusevicius Vanessa Cristina, Humes Eduardo de Castro, Rossi Menezes Paulo, Miguel Euripedes, Caye Arthur

机构信息

Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.

National Center for Research and Innovation in Mental Health, Sao Paulo, Brazil.

出版信息

JMIR Res Protoc. 2025 Mar 14;14:e63636. doi: 10.2196/63636.

Abstract

BACKGROUND

Global concern for the mental well-being of university students is on the rise. Recent studies estimate that around 30% of students experience mental health disorders, and nearly 80% of these individuals do not receive adequate treatment. Brazil, home to around eight million university students, lacks sufficient research addressing their mental health. To address this gap, we aim to conduct a longitudinal mental health survey at 2 Brazilian universities.

OBJECTIVE

This paper outlines the research protocol for a web-based mental health survey designed to assess the well-being of Brazilian university students.

METHODS

The survey targets undergraduate students (N=8028) from 2 institutions: UniFAJ (Centro Universitário de Jaguariúna) and UniMAX (Centro Universitário Max Planck). Students will be invited to respond to self-reported questionnaires, including theSMILE-U (lifestyle and quality of life), the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders [Fifth Edition]) self-rated level 1 cross-cutting symptom measure, and a brief version of the Adult Self-Report Scale for attention-deficit/hyperactivity disorder. Students who exceed thresholds for conditions such as depression, anxiety, and attention-deficit/hyperactivity disorder will receive additional diagnostic instruments. The survey will be conducted annually, tracking individual and group trajectories and enrolling new cohorts each year. Data will be analyzed using cross-sectional and longitudinal methods, focusing on descriptive, associative, and trajectory analyses.

RESULTS

The first wave of data collection began in February 2024 and is expected to conclude in December 2024. As of October 2024, a total of 2034 of 7455 (27.2 in 100) eligible students had completed the questionnaire. Cross-sectional statistical analysis is planned to commence immediately after data collection and is expected to be completed by June 2025.

CONCLUSIONS

This survey uses a scalable, cost-effective design to evaluate mental health conditions among Brazilian university students. The longitudinal framework facilitates the monitoring of mental health trends, supports the development of targeted interventions, and informs policy initiatives in higher education.

TRIAL REGISTRATION

OSF Registries OSF.IO/AM5WS; https://doi.org/10.17605/OSF.IO/AM5WS.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/63636.

摘要

背景

全球对大学生心理健康的关注度日益提高。最近的研究估计,约30%的学生患有心理健康障碍,其中近80%的人未得到充分治疗。巴西有大约800万大学生,但缺乏足够针对他们心理健康的研究。为填补这一空白,我们旨在对巴西两所大学进行一项纵向心理健康调查。

目的

本文概述了一项基于网络的心理健康调查的研究方案,该调查旨在评估巴西大学生的幸福感。

方法

该调查针对来自两所机构的本科生(N = 8028):UniFAJ(雅瓜里乌纳大学中心)和UniMAX(马克斯·普朗克大学中心)。将邀请学生回答自我报告问卷,包括SMILE-U(生活方式和生活质量)、DSM-5(精神疾病诊断与统计手册[第五版])自我评定的一级交叉症状测量量表,以及注意力缺陷多动障碍成人自我报告量表的简短版本。超过抑郁、焦虑和注意力缺陷多动障碍等病症阈值的学生将收到额外的诊断工具。该调查将每年进行一次,跟踪个人和群体轨迹,并每年招收新的队列。将使用横断面和纵向方法分析数据,重点是描述性、关联性和轨迹分析。

结果

第一波数据收集于2024年2月开始,预计于2024年12月结束。截至2024年10月,在7455名符合条件的学生中,共有2034名(每100人中27.2名)完成了问卷。计划在数据收集后立即开始横断面统计分析,预计于2025年6月完成。

结论

这项调查采用了可扩展、具有成本效益的设计来评估巴西大学生的心理健康状况。纵向框架有助于监测心理健康趋势,支持制定有针对性的干预措施,并为高等教育政策倡议提供信息。

试验注册

OSF注册中心OSF.IO/AM5WS;https://doi.org/10.17605/OSF.IO/AM5WS。

国际注册报告标识符(IRRID):DERR1-10.2196/63636。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fba/11953593/694685dcf69a/resprot_v14i1e63636_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验