Tong Jiajun, Xiao Mengmeng, Wang Kemin, Zhao Zijun, Chen Yu, Liu Yiwei, Qing Taiping, Liu Xiaofeng, Zhang Zhiyong
Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Xiangtan, Hunan 411105, China.
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics School of Electronics, Peking University, Beijing 100871, China.
ACS Nano. 2025 Mar 25;19(11):11358-11370. doi: 10.1021/acsnano.5c00523. Epub 2025 Mar 14.
The urgent need for portable, sensitive, and accurate techniques to analyze multiple antibiotics is critical to mitigating the health risks associated with low-dose antibiotics coexposure-induced drug resistance, especially in infants. Emerging field-effect transistor (FET) biosensors are expected to realize the above requirement, but face challenges in terms of sensitivity and selectivity for complex solutions in practical applications. Here, we introduce a small-molecule coating strategy on carbon nanotube (CNT)-FET biosensor arrays to simultaneously block nonspecific adsorption and minimize Debye shielding effects, coupled with aptamer for antibiotics recognition through inkjet printing technology, which significantly improves the selectivity and sensitivity. The developed portable detection system with the FET biosensor chip displayed an ultrafast response time of 100 s, high sensitivity at the femtomolar level for both simultaneous detection and quantification of multiple antibiotics (kanamycin, oxytetracycline, and sulfaquinoxaline), a wide linear range from femtomolar to nanomolar concentrations, and exceptional accuracy, with a recovery rate of 91.1 to 107.5%. This work presents a biosensor array that can quantify various antibiotics at extremely low concentrations in milk samples, is superior to the enzyme-linked immunosorbent assay (ELISA) method, and can also be applied for the detection of other biomarkers, such as toxins and hormones.
迫切需要便携式、灵敏且准确的技术来分析多种抗生素,这对于减轻与低剂量抗生素共同暴露诱导的耐药性相关的健康风险至关重要,尤其是对婴儿而言。新兴的场效应晶体管(FET)生物传感器有望实现上述要求,但在实际应用中,对于复杂溶液的灵敏度和选择性方面面临挑战。在此,我们在碳纳米管(CNT)-FET生物传感器阵列上引入一种小分子涂层策略,以同时阻断非特异性吸附并最小化德拜屏蔽效应,再结合通过喷墨打印技术用于抗生素识别的适配体,这显著提高了选择性和灵敏度。所开发的带有FET生物传感器芯片的便携式检测系统显示出100秒的超快响应时间,在飞摩尔水平对多种抗生素(卡那霉素、土霉素和磺胺喹恶啉)进行同时检测和定量时具有高灵敏度,线性范围从飞摩尔到纳摩尔浓度,且具有出色的准确性,回收率为91.1%至107.5%。这项工作展示了一种生物传感器阵列,它能够在牛奶样品中极低浓度下定量各种抗生素,优于酶联免疫吸附测定(ELISA)方法,并且还可用于检测其他生物标志物,如毒素和激素。