Suppr超能文献

深度学习对改变蛋白质核质穿梭以驱动肿瘤发生的癌症突变进行优先排序。

Deep learning prioritizes cancer mutations that alter protein nucleocytoplasmic shuttling to drive tumorigenesis.

作者信息

Zheng Yongqiang, Yu Kai, Lin Jin-Fei, Liang Zhuoran, Zhang Qingfeng, Li Junteng, Wu Qi-Nian, He Cai-Yun, Lin Mei, Zhao Qi, Zuo Zhi-Xiang, Ju Huai-Qiang, Xu Rui-Hua, Liu Ze-Xian

机构信息

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.

出版信息

Nat Commun. 2025 Mar 14;16(1):2511. doi: 10.1038/s41467-025-57858-8.

Abstract

Genetic variants can affect protein function by driving aberrant subcellular localization. However, comprehensive analysis of how mutations promote tumor progression by influencing nuclear localization is currently lacking. Here, we systematically characterize potential shuttling-attacking mutations (SAMs) across cancers through developing the deep learning model pSAM for the ab initio decoding of the sequence determinants of nucleocytoplasmic shuttling. Leveraging cancer mutations across 11 cancer types, we find that SAMs enrich functional genetic variations and critical genes in cancer. We experimentally validate a dozen SAMs, among which R14M in PTEN, P255L in CHFR, etc. are identified to disrupt the nuclear localization signals through interfering their interactions with importins. Further studies confirm that the nucleocytoplasmic shuttling altered by SAMs in PTEN and CHFR rewire the downstream signaling and eliminate their function of tumor suppression. Thus, this study will help to understand the molecular traits of nucleocytoplasmic shuttling and their dysfunctions mediated by genetic variants.

摘要

基因变异可通过驱动异常的亚细胞定位来影响蛋白质功能。然而,目前缺乏对突变如何通过影响核定位促进肿瘤进展的全面分析。在这里,我们通过开发深度学习模型pSAM对核质穿梭的序列决定因素进行从头解码,系统地表征了跨癌症的潜在穿梭攻击突变(SAM)。利用11种癌症类型的癌症突变,我们发现SAM在癌症中富集功能基因变异和关键基因。我们通过实验验证了十几个SAM,其中PTEN中的R14M、CHFR中的P255L等被确定通过干扰它们与输入蛋白的相互作用来破坏核定位信号。进一步的研究证实,PTEN和CHFR中由SAM改变的核质穿梭重新连接了下游信号,并消除了它们的肿瘤抑制功能。因此,本研究将有助于理解核质穿梭的分子特征及其由基因变异介导的功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/11909177/b3153963f493/41467_2025_57858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验