Sturno Annalise M, Hassell James E, Lanaspa Miguel A, Bruce Kimberley D
Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO, 80045, USA.
J Neuroinflammation. 2025 Mar 15;22(1):85. doi: 10.1186/s12974-025-03401-x.
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with a complex etiology. While emerging AD therapeutics can slow cognitive decline, they may worsen dementia in certain groups of individuals. Therefore, alternative treatments are much needed. Microglia, the brain resident macrophages, have the potential to be novel therapeutic targets as they regulate many facets of AD, including lipid droplet (LD) accumulation, amyloid beta (Aβ) clearance, and neuroinflammation. To carry out such functions, microglia undergo phenotypic changes, which are linked to shifts in metabolism and substrate utilization. While homeostatic microglia are driven by oxidative phosphorylation (OXPHOS) and glycolysis, in aging and AD, microglia shift further towards glycolysis. Interestingly, this "metabolic reprogramming" may be linked to an increase in fructose metabolism. In the brain, microglia predominantly express the fructose transporter SLC2A5 (GLUT5), and enzymes involved in fructolysis and endogenous fructose production, with their expression being upregulated in aging and disease. Here, we review evidence for fructose uptake, breakdown, and production in microglia. We also evaluate emerging literature targeting fructose metabolism in the brain and periphery to assess its ability to modulate microglial function in AD. The ability of microglia to transport and utilize fructose, coupled with the well-established role of fructose in metabolic dysfunction, supports the notion that microglial fructose metabolism may be a novel potential therapeutic target for AD.
阿尔茨海默病(AD)是一种与年龄相关的神经退行性疾病,病因复杂。虽然新兴的AD治疗方法可以减缓认知衰退,但在某些个体群体中可能会使痴呆症恶化。因此,非常需要替代治疗方法。小胶质细胞是大脑中的常驻巨噬细胞,有可能成为新的治疗靶点,因为它们调节AD的许多方面,包括脂滴(LD)积累、淀粉样β蛋白(Aβ)清除和神经炎症。为了执行这些功能,小胶质细胞会发生表型变化,这与代谢和底物利用的转变有关。虽然稳态小胶质细胞由氧化磷酸化(OXPHOS)和糖酵解驱动,但在衰老和AD中,小胶质细胞进一步向糖酵解转变。有趣的是,这种“代谢重编程”可能与果糖代谢增加有关。在大脑中,小胶质细胞主要表达果糖转运体SLC2A5(GLUT5)以及参与果糖分解和内源性果糖产生的酶,它们的表达在衰老和疾病中上调。在这里,我们综述了小胶质细胞中果糖摄取、分解和产生的证据。我们还评估了针对大脑和外周果糖代谢的新兴文献,以评估其调节AD中小胶质细胞功能的能力。小胶质细胞运输和利用果糖的能力,以及果糖在代谢功能障碍中已确立的作用,支持了小胶质细胞果糖代谢可能是AD新的潜在治疗靶点这一观点。