Suppr超能文献

基于计算机断层扫描血管造影的放射组学模型用于腹主动脉腔内修复术的预后预测

A computed tomography angiography-based radiomics model for prognostic prediction of endovascular abdominal aortic repair.

作者信息

Huang Shanya, Liu Dingxiao, Deng Kai, Shu Chang, Wu Yan, Zhou Zhiguang

机构信息

National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha 410011, China.

Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.

出版信息

Int J Cardiol. 2025 Jun 15;429:133138. doi: 10.1016/j.ijcard.2025.133138. Epub 2025 Mar 14.

Abstract

OBJECTIVE

This study aims to develop a radiomics machine learning (ML) model that uses preoperative computed tomography angiography (CTA) data to predict the prognosis of endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA) patients.

METHODS

In this retrospective study, 164 AAA patients underwent EVAR and were categorized into shrinkage (good prognosis) or stable (poor prognosis) groups based on post-EVAR sac regression. From preoperative AAA and perivascular adipose tissue (PVAT) image, radiomics features (RFs) were extracted for model creation. Patients were split into 80 % training and 20 % test sets. A support vector machine model was constructed for prediction. Accuracy is evaluated via the area under the receiver operating characteristic curve (AUC).

RESULTS

Demographics and comorbidities showed no significant differences between shrinkage and stable groups. The model containing 5 AAA RFs (which are original_firstorder_InterquartileRange, log-sigma-3-0-mm-3D_glrlm_GrayLevelNonUniformityNormalized, log-sigma-3-0-mm-3D_glrlm_RunPercentage, log-sigma-4-0-mm-3D_glrlm_ShortRunLowGrayLevelEmphasis, wavelet-LLH_glcm_SumEntropy) had AUCs of 0.86 (training) and 0.77 (test). The model containing 7 PVAT RFs (which are log-sigma-3-0-mm-3D_firstorder_InterquartileRange, log-sigma-3-0-mm-3D_glcm_Correlation, wavelet-LHL_firstorder_Energy, wavelet-LHL_firstorder_TotalEnergy, wavelet-LHH_firstorder_Mean, wavelet-LHH_glcm_Idmn, wavelet-LHH_glszm_GrayLevelNonUniformityNormalized) had AUCs of 0.76 (training) and 0.78 (test). Combining AAA and PVAT RFs yielded the highest accuracy: AUCs of 0.93 (training) and 0.87 (test).

CONCLUSIONS

Radiomics-based CTA model predicts aneurysm sac regression post-EVAR in AAA patients. PVAT RFs from preoperative CTA images were closely related to AAA prognosis after EVAR, enhancing accuracy when combined with AAA RFs. This preliminary study explores a predictive model designed to assist clinicians in optimizing therapeutic strategies during clinical decision-making processes.

摘要

目的

本研究旨在开发一种放射组学机器学习(ML)模型,该模型使用术前计算机断层扫描血管造影(CTA)数据来预测腹主动脉瘤(AAA)患者血管内动脉瘤修复(EVAR)的预后。

方法

在这项回顾性研究中,164例AAA患者接受了EVAR治疗,并根据EVAR术后瘤腔缩小情况分为缩小组(预后良好)或稳定组(预后不良)。从术前AAA和血管周围脂肪组织(PVAT)图像中提取放射组学特征(RFs)用于模型创建。患者被分为80%的训练集和20%的测试集。构建支持向量机模型进行预测。通过受试者操作特征曲线(AUC)下的面积评估准确性。

结果

缩小组和稳定组在人口统计学和合并症方面无显著差异。包含5个AAA RFs(分别为original_firstorder_InterquartileRange、log-sigma-3-0-mm-3D_glrlm_GrayLevelNonUniformityNormalized、log-sigma-3-0-mm-3D_glrlm_RunPercentage、log-sigma-4-0-mm-3D_glrlm_ShortRunLowGrayLevelEmphasis、wavelet-LLH_glcm_SumEntropy)的模型训练集AUC为0.86,测试集AUC为0.77。包含7个PVAT RFs(分别为log-sigma-3-0-mm-3D_firstorder_InterquartileRange、log-sigma-3-0-mm-3D_glcm_Correlation、wavelet-LHL_firstorder_Energy、wavelet-LHL_firstorder_TotalEnergy、wavelet-LHH_firstorder_Mean、wavelet-LHH_glcm_Idmn、wavelet-LHH_glszm_GrayLevelNonUniformityNormalized)的模型训练集AUC为0.76,测试集AUC为0.78。结合AAA和PVAT RFs可获得最高准确性:训练集AUC为0.93,测试集AUC为0.87。

结论

基于放射组学的CTA模型可预测AAA患者EVAR术后瘤腔缩小情况。术前CTA图像中的PVAT RFs与EVAR术后AAA预后密切相关,与AAA RFs结合时可提高准确性。这项初步研究探索了一种预测模型,旨在帮助临床医生在临床决策过程中优化治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验