Suppr超能文献

在对比增强乳腺钼靶成像上,用于鉴别仅表现为可疑乳腺钙化灶的病变周围区域。

Peri-lesion regions in differentiating suspicious breast calcification-only lesions specifically on contrast enhanced mammography.

作者信息

Cao Kun, Gao Fei, Long Rong, Zhang Fan-Dong, Huang Chen-Cui, Cao Min, Yu Yi-Zhou, Sun Ying-Shi

机构信息

Department of Radiology, Peking University Cancer Hospital and Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, China.

AI Lab, Deepwise and League of PhD Technology Co. LTD, Beijing, China.

出版信息

J Xray Sci Technol. 2024;32(3):583-596. doi: 10.3233/XST-230332.

Abstract

PURPOSE

The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram.

METHODS

Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading.

RESULTS

Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p < 0.05; expanded: 0.89 v.s. 0.81, p < 0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy.

CONCLUSIONS

The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.

摘要

目的

探讨对比增强乳腺钼靶摄影(CEM)中钙化周围区域在常规钼靶上仅表现为钙化的乳腺病变鉴别诊断中的附加价值。

方法

纳入因可疑单纯钙化病变而接受CEM检查的患者。测试集包括2017年3月至2019年3月期间的患者,而验证集收集于2019年4月至2019年10月期间。钙化由基于机器学习的计算机辅助系统自动检测并分组。除了从钙化区域的低能量(LE)和重组(RC)图像中提取放射组学特征外,还尝试了通过以1毫米至9毫米的梯度径向扩展标注边界生成的钙化周围区域。建立机器学习(ML)模型将钙化分为恶性和良性组。还通过将ML模型与主观读片相结合来评估诊断矩阵。

结果

建立了LE(显著特征:小波-LLL_glcm_Imc2_MLO;小波-HLL_firstorder_Entropy_MLO;小波-LHH_glcm_DifferenceVariance_CC;小波-HLL_glcm_SumEntropy_MLO;小波-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO;原始_firstorder_Entropy_MLO;原始_shape_Elongation_MLO)和RC(显著特征:小波-HLH_glszm_GrayLevelNonUniformityNormalized_MLO;小波-LLH_firstorder_10Percentile_CC;原始_firstorder_Maximum_MLO;小波-HHH_glcm_Autocorrelation_MLO;原始_shape_Elongation_MLO;小波-LHL_glszm_GrayLevelNonUniformityNormalized_MLO;小波-LLH_firstorder_RootMeanSquared_MLO)图像的模型,各有7个特征。RC模型的曲线下面积(AUC)明显优于边界紧凑和扩展的LE模型(RC对LE,紧凑:0.81对0.73,p<0.05;扩展:0.89对0.81,p<0.05),边界扩展3毫米的RC模型与其他尺寸的模型相比性能最佳(AUC=0.89)。与放射科医生的读片相结合,3毫米边界的RC模型在预测恶性肿瘤时的灵敏度为0.871,阴性预测值为0.937,准确率为0.843。

结论

整合CEM中钙化内部和周围区域的机器学习模型有可能帮助放射科医生预测可疑乳腺钙化的恶性程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验