Suppr超能文献

一种使用Transformer从点云进行表型测量的棉花器官分割方法。

A cotton organ segmentation method with phenotypic measurements from a point cloud using a transformer.

作者信息

Liu Fu-Yong, Geng Hui, Shang Lin-Yuan, Si Chun-Jing, Shen Shi-Quan

机构信息

College of Information Science and Engineering, Xinjiang University of Science and Technology, Korla, 841000, China.

College of Information Engineering, Tarim University, Alaer, 843300, China.

出版信息

Plant Methods. 2025 Mar 16;21(1):37. doi: 10.1186/s13007-025-01357-w.

Abstract

Cotton phenomics plays a crucial role in understanding and managing the growth and development of cotton plants. The segmentation of point clouds, a process that underpins the measurement of plant organ structures through 3D point clouds, is necessary for obtaining precise phenotypic parameters. This study proposes a cotton point cloud organ semantic segmentation method named TPointNetPlus, which combines PointNet++ and Transformer algorithms. Firstly, a dedicated point cloud dataset for cotton plants is constructed using multi-view images. Secondly, the attention module Transformer is introduced into the PointNet++ model to increase the accuracy of feature extraction. Finally, organ-level cotton plant point cloud segmentation is performed using the HDBSCAN algorithm, successfully segmenting cotton leaves, bolls, and branches from the entire plant, and obtaining their phenotypic feature parameters. The research results indicate that the TPointNetPlus model achieved a high accuracy of 98.39% in leaf semantic segmentation. The correlation coefficients between the measured values of four phenotypic parameters (plant height, leaf area, and boll volume) ranged from 0.95 to 0.97, demonstrating the accurate predictive capability of the model for these key traits. The proposed method, which enables automated data analysis from a plant's 3D point cloud to phenotypic parameters, provides a reliable reference for in-depth studies of plant phenotypes.

摘要

棉花表型组学在理解和管理棉花植株的生长发育方面起着至关重要的作用。点云分割是通过三维点云测量植物器官结构的基础过程,对于获取精确的表型参数是必要的。本研究提出了一种名为TPointNetPlus的棉花点云器官语义分割方法,该方法结合了PointNet++和Transformer算法。首先,利用多视图图像构建了一个专门的棉花植株点云数据集。其次,将注意力模块Transformer引入PointNet++模型以提高特征提取的准确性。最后,使用HDBSCAN算法进行器官级棉花植株点云分割,成功地从整个植株中分割出棉花叶片、棉铃和枝条,并获得它们的表型特征参数。研究结果表明,TPointNetPlus模型在叶片语义分割中达到了98.39%的高精度。四个表型参数(株高、叶面积和棉铃体积)测量值之间的相关系数在0.95至0.97之间,表明该模型对这些关键性状具有准确的预测能力。所提出的方法能够实现从植物三维点云到表型参数的自动化数据分析,为深入研究植物表型提供了可靠的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/937b/11912792/f5772bb95db1/13007_2025_1357_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验