Xu Jieping, Liang Yonghui, Liu Jin, Huang Zongfu
National University of Defense Technology, College of Opto-Electronic Science and Engineering, Deya Road 109, Changsha 410073, China.
Sensors (Basel). 2017 Sep 18;17(9):2142. doi: 10.3390/s17092142.
Gaofen-4 is China's first geosynchronous orbit high-definition optical imaging satellite with extremely high temporal resolution. The features of staring imaging and high temporal resolution enable the super-resolution of multiple images of the same scene. In this paper, we propose a super-resolution (SR) technique to reconstruct a higher-resolution image from multiple low-resolution (LR) satellite images. The method first performs image registration in both the spatial and range domains. Then the point spread function (PSF) of LR images is parameterized by a Gaussian function and estimated by a blind deconvolution algorithm based on the maximum a posteriori (MAP). Finally, the high-resolution (HR) image is reconstructed by a MAP-based SR algorithm. The MAP cost function includes a data fidelity term and a regularized term. The data fidelity term is in the L₂ norm, and the regularized term employs the Huber-Markov prior which can reduce the noise and artifacts while preserving the image edges. Experiments with real Gaofen-4 images show that the reconstructed images are sharper and contain more details than Google Earth ones.
高分四号是中国首颗具有极高时间分辨率的地球同步轨道高清光学成像卫星。凝视成像和高时间分辨率的特性使得能够对同一场景的多幅图像进行超分辨率处理。在本文中,我们提出了一种超分辨率(SR)技术,用于从多幅低分辨率(LR)卫星图像重建更高分辨率的图像。该方法首先在空间和距离域进行图像配准。然后,LR图像的点扩散函数(PSF)由高斯函数参数化,并通过基于最大后验(MAP)的盲反卷积算法进行估计。最后,通过基于MAP的SR算法重建高分辨率(HR)图像。MAP代价函数包括数据保真项和正则化项。数据保真项采用L₂范数,正则化项采用Huber-Markov先验,它可以在保留图像边缘的同时减少噪声和伪影。对真实高分四号图像的实验表明,重建后的图像比谷歌地球的图像更清晰,包含更多细节。