Suppr超能文献

生态瞬时评估数据离散时间状态空间建模中的缺失数据:插补方法的蒙特卡洛研究

Missing Data in Discrete Time State-Space Modeling of Ecological Momentary Assessment Data: A Monte-Carlo Study of Imputation Methods.

作者信息

Slipetz Lindley R, Falk Ami, Henry Teague R

机构信息

Department of Psychology, University of Virginia, Charlottesville, USA.

出版信息

Multivariate Behav Res. 2025 Jul-Aug;60(4):695-710. doi: 10.1080/00273171.2025.2469055. Epub 2025 Mar 17.

Abstract

When using ecological momentary assessment data (EMA), missing data is pervasive as participant attrition is a common issue. Thus, any EMA study must have a missing data plan. In this paper, we discuss missingness in time series analysis and the appropriate way to handle missing data when the data is modeled as an idiographic discrete time continuous measure state-space model. We found that Missing Completely at Random, Missing At Random, and Time-dependent Missing At Random data have less bias and variability than Autoregressive Time-dependent Missing At Random and Missing Not At Random. The Kalman filter excelled at handling missing data under most conditions. Contrary to the literature, we found that using a variety of methods, multiple imputations struggled to recover the parameters.

摘要

在使用生态瞬时评估数据(EMA)时,由于参与者流失是一个常见问题,缺失数据普遍存在。因此,任何EMA研究都必须有一个缺失数据计划。在本文中,我们讨论了时间序列分析中的缺失情况,以及当数据被建模为个性化离散时间连续测量状态空间模型时处理缺失数据的适当方法。我们发现,完全随机缺失、随机缺失和时间依赖随机缺失的数据比自回归时间依赖随机缺失和非随机缺失具有更小的偏差和变异性。卡尔曼滤波器在大多数情况下擅长处理缺失数据。与文献相反,我们发现使用多种方法时,多重插补难以恢复参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验