Tian Lucas Y, Garzón Kedar U, Hanuska Daniel J, Rouse Adam G, Eldridge Mark A G, Schieber Marc H, Wang Xiao-Jing, Tenenbaum Joshua B, Freiwald Winrich A
Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA.
Center for Brains, Minds and Machines, MIT & Rockefeller University.
bioRxiv. 2025 Aug 23:2025.03.03.641276. doi: 10.1101/2025.03.03.641276.
At the core of intelligence lies proficiency in solving new problems, including those that differ dramatically from problems seen before. Problem-solving, in turn, depends on goal-directed generation of novel thoughts and behaviors, which has been proposed to rely on internal representations of discrete units, or symbols, and processes that can recombine them into a large set of possible composite representations. Although this view has been influential in formulating cognitive-level explanations of behavior, definitive evidence for a neuronal substrate of symbols has remained elusive. Here, we identify a neural population encoding action symbols-internal, recombinable representations of discrete units of motor behavior-localized to a specific area of frontal cortex. In macaque monkeys performing a drawing-like task designed to assess recombination of learned action symbols into novel sequences, we found behavioral evidence for three critical features that indicate actions have an underlying symbolic representation: (i) invariance over low-level motor parameters; (ii) categorical structure, reflecting discrete types of action; and (iii) recombination into novel sequences. In simultaneous neural recordings across motor, premotor, and prefrontal cortex, we found that planning-related population activity in ventral premotor cortex (PMv) encodes actions in a manner that, like behavior, reflects motor invariance, categorical structure, and recombination, three properties indicating a symbolic representation. Activity in no other recorded area exhibited this combination of properties. These findings reveal a neural representation of action symbols localized to PMv, and therefore identify a putative neural substrate for symbolic cognitive operations.
智能的核心在于解决新问题的能力,包括那些与之前见过的问题有显著差异的问题。而解决问题又依赖于目标导向的新思想和行为的产生,有人提出这依赖于离散单元或符号的内部表征,以及能够将它们重新组合成大量可能的复合表征的过程。尽管这种观点在形成行为的认知层面解释方面很有影响力,但符号的神经元基质的确切证据仍然难以捉摸。在这里,我们确定了一个神经群体,它编码动作符号——运动行为离散单元的内部、可重组表征——定位于额叶皮质的一个特定区域。在猕猴执行一项类似绘图的任务以评估将学习到的动作符号重组为新序列的过程中,我们发现了行为证据,表明动作具有潜在的符号表征的三个关键特征:(i)对低层次运动参数的不变性;(ii)类别结构,反映离散的动作类型;(iii)重组为新序列。在对运动皮质、运动前区皮质和前额叶皮质进行同步神经记录时,我们发现腹侧运动前区皮质(PMv)中与计划相关的群体活动以一种与行为相似的方式编码动作,反映了运动不变性、类别结构和重组,这三个属性表明存在符号表征。其他记录区域的活动均未表现出这种属性组合。这些发现揭示了定位于PMv的动作符号的神经表征,因此确定了符号认知操作的一个假定神经基质。