Lee Yunjeong, Fang Yingye, Kuila Shobhan, Imoukhuede Princess I
bioRxiv. 2025 Mar 4:2025.02.27.640640. doi: 10.1101/2025.02.27.640640.
Angiogenesis, the formation of new vessels from existing vessels, is mediated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Despite discoveries supporting the cross-family interactions between VEGF and PDGF families, sharing the binding partners between them makes it challenging to identify growth factors that predominantly affect angiogenesis. Systems biology offers promises to untangle this complexity. Thus, in this study, we developed a mass-action kinetics-based computational model for cross-family interactions between VEGFs (VEGF-A, VEGF-B, and PlGF) and PDGFs (PDGF-AA, PDGF-AB, and PDGF-BB) with their receptors (VEGFR1, VEGFR2, NRP1, PDGFRα, and PDGFRβ). The model, parametrized with our literature mining and surface resonance plasmon assays, was validated by comparing the concentration of VEGFR1 complexes with a previously constructed angiogenesis model. The model predictions include five outcomes: 1) the percentage of free or bound ligands and 2) receptors, 3) the concentration of free ligands, 4) the percentage of ligands occupying each receptor, and 5) the concentration of ligands that is bound to each receptor. We found that at equimolar ligand concentrations (1 nM), PlGF and VEGF-A were the main binding partners of VEGFR1 and VEGFR2, respectively. Varying the density of receptors resulted in the following five outcomes: 1) Increasing VEGFR1 density depletes the free PlGF concentration, 2) increasing VEGFR2 density decreases PDGF:PDGFRα complexes, 3) increased NRP1 density generates a biphasic concentration of the free PlGF, 4) increased PDGFRα density increases PDGFs:PDGFRα binding, and 5) increasing PDGFRβ density increases VEGF-A:PDGFRβ. Our model offers a reproducible, fundamental framework for exploring cross-family interactions that can be extended to the tissue level or intracellular molecular level. Also, our model may help develop therapeutic strategies in pathological angiogenesis by identifying the dominant complex in the cell signaling.
New blood vessel formation from existing ones is essential for growth, healing, and reproduction. However, when this process is disrupted-either too much or too little-it can contribute to diseases such as cancer and peripheral arterial disease. Two key families of proteins, vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs), regulate this process. Traditionally, scientists believed that VEGFs only bind to VEGF receptors and PDGFs to PDGF receptors. However, recent findings show that these proteins can interact with each other's receptors, making it more challenging to understand and control blood vessel formation. To clarify these complex interactions, we combined computer modeling with biological data to map out which proteins bind to which receptors and to what extent. Our findings show that when VEGFs and PDGFs are present in equal amounts, VEGFs are the primary binding partners for VEGF receptors. We also explored how changes in receptor levels affect these interactions in disease-like conditions. This work provides a foundational computational model for studying cross-family interactions, which can be expanded to investigate tissue-level effects and processes inside cells. Ultimately, our model may help develop better treatments for diseases linked to abnormal blood vessel growth by identifying key protein-receptor interactions.
血管生成,即从现有血管形成新血管,由血管内皮生长因子(VEGF)和血小板衍生生长因子(PDGF)介导。尽管有研究支持VEGF和PDGF家族之间的跨家族相互作用,但它们共享结合伴侣使得识别主要影响血管生成的生长因子具有挑战性。系统生物学有望解开这种复杂性。因此,在本研究中,我们开发了一个基于质量作用动力学的计算模型,用于研究VEGFs(VEGF-A、VEGF-B和胎盘生长因子(PlGF))和PDGFs(PDGF-AA、PDGF-AB和PDGF-BB)与其受体(VEGFR1、VEGFR2、神经纤毛蛋白1(NRP1)、PDGFRα和PDGFRβ)之间的跨家族相互作用。该模型通过文献挖掘和表面共振等离子体分析进行参数化,并通过将VEGFR1复合物的浓度与先前构建的血管生成模型进行比较来验证。模型预测包括五个结果:1)游离或结合配体和2)受体的百分比,3)游离配体的浓度,4)占据每个受体的配体百分比,以及5)与每个受体结合的配体浓度。我们发现,在等摩尔配体浓度(1 nM)下,PlGF和VEGF-A分别是VEGFR1和VEGFR2的主要结合伴侣。改变受体密度会导致以下五个结果:1)增加VEGFR1密度会耗尽游离PlGF浓度,2)增加VEGFR2密度会降低PDGF:PDGFRα复合物,3)增加NRP1密度会产生游离PlGF的双相浓度,4)增加PDGFRα密度会增加PDGFs:PDGFRα结合,以及5)增加PDGFRβ密度会增加VEGF-A:PDGFRβ。我们的模型为探索跨家族相互作用提供了一个可重复的基础框架,可扩展到组织水平或细胞内分子水平。此外,我们的模型可能有助于通过识别细胞信号中的主要复合物来制定病理性血管生成的治疗策略。
从现有血管形成新血管对于生长、愈合和繁殖至关重要。然而,当这个过程被破坏时——要么过多要么过少——它可能导致诸如癌症和外周动脉疾病等疾病。两种关键的蛋白质家族,血管内皮生长因子(VEGFs)和血小板衍生生长因子(PDGFs),调节这个过程。传统上,科学家们认为VEGFs只与VEGF受体结合,PDGFs只与PDGF受体结合。然而,最近的研究结果表明,这些蛋白质可以相互作用于对方的受体,这使得理解和控制血管形成更具挑战性。为了阐明这些复杂的相互作用,我们将计算机建模与生物学数据相结合,以确定哪些蛋白质与哪些受体结合以及结合程度如何。我们的研究结果表明,当VEGFs和PDGFs等量存在时,VEGFs是VEGF受体的主要结合伴侣。我们还探讨了受体水平的变化如何在类似疾病的条件下影响这些相互作用。这项工作为研究跨家族相互作用提供了一个基础计算模型,可扩展到研究组织水平的影响和细胞内的过程。最终,我们的模型可能有助于通过识别关键的蛋白质-受体相互作用来开发更好的治疗与异常血管生长相关疾病的方法。