Acera-Mateos Mario, Adiconis Xian, Li Jessica-Kanglin, Marchese Domenica, Caratù Ginevra, Hon Chung-Chau, Tiwari Prabha, Kojima Miki, Vieth Beate, Murphy Michael A, Simmons Sean K, Lefevre Thomas, Claes Irene, O'Connor Christopher L, Menon Rajasree, Otto Edgar A, Ando Yoshinari, Vandereyken Katy, Kretzler Matthias, Bitzer Markus, Fraenkel Ernest, Voet Thierry, Enard Wolfgang, Carninci Piero, Heyn Holger, Levin Joshua Z, Mereu Elisabetta
Josep Carreras Leukemia Research Institute, Barcelona, Spain.
University of Barcelona (UB), Barcelona, Spain.
bioRxiv. 2025 Mar 6:2025.03.06.637075. doi: 10.1101/2025.03.06.637075.
The integration of multimodal single-cell data enables comprehensive organ reference atlases, yet its impact remains largely unexplored, particularly in complex tissues. We generated a benchmarking dataset for the renal cortex by integrating 3' and 5' scRNA-seq with joint snRNA-seq and snATAC-seq, profiling 119,744 high-quality nuclei/cells from 19 donors. To align cell identities and enable consistent comparisons, we developed the interpretable machine learning tool scOMM (single-cell Omics Multimodal Mapping) and systematically assessed integration strategies. "Horizontal" integration of scRNA and snRNA-seq improved cell-type identification, while "vertical" integration of snRNA-seq and snATAC-seq had an additive effect, enhancing resolution in homogeneous populations and difficult-to-identify states. Global integration was especially effective in identifying adaptive states and rare cell types, including WFDC2-expressing Thick Ascending Limb and Norn cells, previously undetected in kidney atlases. Our work establishes a robust framework for multimodal reference atlas generation, advancing single-cell analysis and extending its applicability to diverse tissues.
多模态单细胞数据的整合能够生成全面的器官参考图谱,但其影响在很大程度上仍未得到探索,尤其是在复杂组织中。我们通过将3'和5' scRNA-seq与联合snRNA-seq和snATAC-seq整合,生成了一个用于肾皮质的基准数据集,对来自19名供体的119,744个高质量细胞核/细胞进行了分析。为了对齐细胞身份并实现一致的比较,我们开发了可解释的机器学习工具scOMM(单细胞组学多模态映射)并系统地评估了整合策略。scRNA和snRNA-seq的“水平”整合改善了细胞类型识别,而snRNA-seq和snATAC-seq的“垂直”整合具有累加效应,提高了同质群体和难以识别状态下的分辨率。全局整合在识别适应性状态和罕见细胞类型方面特别有效,包括在肾脏图谱中以前未检测到的表达WFDC2的厚升支和Norn细胞。我们的工作为多模态参考图谱生成建立了一个强大的框架,推动了单细胞分析并将其适用性扩展到不同组织。