Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia, PA, 19104, USA.
Genome Biol. 2023 Oct 24;24(1):244. doi: 10.1186/s13059-023-03073-x.
Single-cell RNA-sequencing (scRNA-seq) measures gene expression in single cells, while single-nucleus ATAC-sequencing (snATAC-seq) quantifies chromatin accessibility in single nuclei. These two data types provide complementary information for deciphering cell types and states. However, when analyzed individually, they sometimes produce conflicting results regarding cell type/state assignment. The power is compromised since the two modalities reflect the same underlying biology. Recently, it has become possible to measure both gene expression and chromatin accessibility from the same nucleus. Such paired data enable the direct modeling of the relationships between the two modalities. Given the availability of the vast amount of single-modality data, it is desirable to integrate the paired and unpaired single-modality datasets to gain a comprehensive view of the cellular complexity.
We benchmark nine existing single-cell multi-omic data integration methods. Specifically, we evaluate to what extent the multiome data provide additional guidance for analyzing the existing single-modality data, and whether these methods uncover peak-gene associations from single-modality data. Our results indicate that multiome data are helpful for annotating single-modality data. However, we emphasize that the availability of an adequate number of nuclei in the multiome dataset is crucial for achieving accurate cell type annotation. Insufficient representation of nuclei may compromise the reliability of the annotations. Additionally, when generating a multiome dataset, the number of cells is more important than sequencing depth for cell type annotation.
Seurat v4 is the best currently available platform for integrating scRNA-seq, snATAC-seq, and multiome data even in the presence of complex batch effects.
单细胞 RNA 测序(scRNA-seq)测量单细胞中的基因表达,而单核 ATAC 测序(snATAC-seq)定量测量单核中的染色质可及性。这两种数据类型为解析细胞类型和状态提供了互补信息。然而,当单独分析时,它们有时会产生关于细胞类型/状态分配的冲突结果。由于两种模态反映了相同的潜在生物学,因此这种方法的效能受到了影响。最近,已经有可能从同一个核中同时测量基因表达和染色质可及性。这种配对数据使两种模态之间的关系可以直接建模。鉴于大量单模态数据的可用性,期望整合配对和非配对的单模态数据集,以全面了解细胞复杂性。
我们对现有的 9 种单细胞多组学数据整合方法进行了基准测试。具体来说,我们评估了多组学数据在多大程度上为分析现有的单模态数据提供了额外的指导,以及这些方法是否从单模态数据中发现了峰基因关联。我们的结果表明,多组学数据有助于注释单模态数据。然而,我们强调,多组学数据集中有足够数量的核是实现准确细胞类型注释的关键。核的表示不足可能会影响注释的可靠性。此外,在生成多组学数据集时,对于细胞类型注释,细胞数量比测序深度更为重要。
即使存在复杂的批次效应,Seurat v4 仍然是整合 scRNA-seq、snATAC-seq 和多组学数据的最佳现有平台。