Xiao Mao, Wang Mingyi, Mentler Bernhard, Garmash Olga, Lamkaddam Houssni, Molteni Ugo, Simon Mario, Ahonen Lauri, Amorim Antonio, Baccarini Andrea, Bauer Paulus Salomon, Chen Dexian, Chiu Randall, Dada Lubna, Duplissy Jonathan, Finkenzeller Henning, Fischer Lukas, He Xu-Cheng, Heinritzi Martin, Hofbauer Victoria, Kim Changhyuk, Kürten Andreas, Kvashnin Aleksandr, Lehtipalo Katrianne, Liu Yuliang, Mai Huajun, Makhmutov Vladimir, Mathot Serge, Mauldin Roy, Onnela Antti, Petäjä Tuukka, Quéléver Lauriane L J, Rissanen Matti, Schuchmann Simone, Sipilä Mikko, Stolzenburg Dominik, Stozhkov Yuri, Tauber Christian, Tomé António, Wagner Robert, Yan Chao, Yang Boxing, Ye Penglin, Zha Qiaozi, Curtius Joachim, Hansel Armin, Kirkby Jasper, Kulmala Markku, Volkamer Rainer, Winkler Paul M, Worsnop Douglas R, Nie Wei, Donahue Neil M, Hoyle Christopher R, Jiang Jianhui, Baltensperger Urs, Dommen Josef, El Haddad Imad
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland.
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA USA.
Nat Geosci. 2025;18(3):239-245. doi: 10.1038/s41561-025-01645-z. Epub 2025 Mar 10.
Exposure to anthropogenic atmospheric aerosol is a major health issue, causing several million deaths per year worldwide. The oxidation of aromatic hydrocarbons from traffic and wood combustion is an important anthropogenic source of low-volatility species in secondary organic aerosol, especially in heavily polluted environments. It is not yet established whether the formation of anthropogenic secondary organic aerosol involves mainly rapid autoxidation, slower sequential oxidation steps or a combination of the two. Here we reproduced a typical urban haze in the 'Cosmics Leaving Outdoor Droplets' chamber at the European Organization for Nuclear Research and observed the dynamics of aromatic oxidation products during secondary organic aerosol growth on a molecular level to determine mechanisms underlying their production and removal. We demonstrate that sequential oxidation is required for substantial secondary organic aerosol formation. Second-generation oxidation decreases the products' saturation vapour pressure by several orders of magnitude and increases the aromatic secondary organic aerosol yields from a few percent to a few tens of percent at typical atmospheric concentrations. Through regional modelling, we show that more than 70% of the exposure to anthropogenic organic aerosol in Europe arises from second-generation oxidation.
接触人为大气气溶胶是一个重大的健康问题,每年在全球导致数百万人死亡。交通和木材燃烧产生的芳烃氧化是二次有机气溶胶中低挥发性物种的一个重要人为来源,尤其是在污染严重的环境中。目前尚不清楚人为二次有机气溶胶的形成主要是涉及快速自动氧化、较慢的顺序氧化步骤还是两者的结合。在这里,我们在欧洲核子研究组织的“宇宙离开室外水滴”实验舱中重现了典型的城市雾霾,并在分子水平上观察了二次有机气溶胶生长过程中芳烃氧化产物的动态,以确定其产生和去除的潜在机制。我们证明,大量二次有机气溶胶的形成需要顺序氧化。第二代氧化使产物的饱和蒸气压降低几个数量级,并在典型大气浓度下将芳烃二次有机气溶胶的产率从百分之几提高到百分之几十。通过区域建模,我们表明欧洲超过70%的人为有机气溶胶暴露来自第二代氧化。