Waaijer Laurien A, van Cranenbroek Bram, Koenen Hans J P M
Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
Cytometry A. 2025 Apr;107(4):226-232. doi: 10.1002/cyto.a.24927. Epub 2025 Mar 17.
Profiling the human immune system is essential to understanding its role in disease, but it requires advanced and novel technologies. Spectral flow cytometry (SFM) enables deep profiling at the single-cell level. It is able to detect many fluorescent parameters within one measurement; therefore, it is vastly useful when patient material is limited. However, designing and analyzing these high-dimensional datasets remains complex. We optimized a 42-parameter panel (40 commercially available fluorochromes, one stacked fluorochrome and an autofluorescent (AF) parameter) that enables the identification of innate and adaptive immune cell composition. It is the first 42-parameter panel that is optimized on peripheral whole blood, and it outperforms other published OMIPs of 40 colors in terms of complexity. With this panel, we are able to identify neutrophils, basophils, eosinophils, monocytes, dendritic cells, CD4 T cells, CD8 T cells, regulatory T cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, B cells, NK cells, dendritic cells, and innate lymphoid cells (ILCs). Furthermore, with the utilization of co-stimulatory, checkpoint, activation, homing, and maturation markers, this panel enables deeper phenotyping. Within one measurement, more than 80 distinct immune cell subsets were identified by FlowSOM and annotated manually. In conclusion, with this high-dimensional SFM panel, we aim to generate immune profiles to understand disease and monitor therapy response.
剖析人类免疫系统对于理解其在疾病中的作用至关重要,但这需要先进的新技术。光谱流式细胞术(SFM)能够在单细胞水平进行深度剖析。它能够在一次测量中检测多个荧光参数;因此,当患者样本有限时非常有用。然而,设计和分析这些高维数据集仍然很复杂。我们优化了一个42参数面板(40种市售荧光染料、一种叠加荧光染料和一个自发荧光(AF)参数),可用于识别先天性和适应性免疫细胞组成。这是第一个在外周全血上优化的42参数面板,在复杂性方面优于其他已发表的40色OMIP。使用该面板,我们能够识别中性粒细胞、嗜碱性粒细胞、嗜酸性粒细胞、单核细胞、树突状细胞、CD4 T细胞、CD8 T细胞、调节性T细胞、黏膜相关恒定T(MAIT)细胞、γδ T细胞、B细胞、NK细胞、树突状细胞和先天性淋巴细胞(ILC)。此外,通过利用共刺激、检查点、激活、归巢和成熟标记,该面板能够进行更深入的表型分析。在一次测量中,通过FlowSOM识别出80多个不同的免疫细胞亚群并进行了手动注释。总之,使用这个高维SFM面板,我们旨在生成免疫图谱以了解疾病并监测治疗反应。