Suppr超能文献

一种基于大语言模型的方法,用于对跌倒风险监测系统中自由文本报告的信息进行编码:医院风险管理的新机遇。

A Large Language Model-Based Approach for Coding Information from Free-Text Reported in Fall Risk Surveillance Systems: New Opportunities for In-Hospital Risk Management.

作者信息

Rango Davide, Lorenzoni Giulia, Silva Henrique Salmazo Da, Alves Vicente Paulo, Gregori Dario

机构信息

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy.

Pós-Graduação em Gerontologia, Universidade Catolica de Brasilia, Brasília 71966-700, DF, Brazil.

出版信息

J Clin Med. 2025 Feb 26;14(5):1580. doi: 10.3390/jcm14051580.

Abstract

Falls are the most common adverse in-hospital event, resulting in a considerable social and economic burden on individuals, their families, and the healthcare system. This study aims to develop and implement an automatic coding system using large language models (LLMs) to extract and categorize free-text information (including the location of the fall and any resulting injury) from in-hospital fall records. : The study used the narrative description of the falls reported through the Incident Reporting system to the Risk Management Service of an Italian Local Health Authority in Italy (name not disclosed as per research agreement). The OpenAI application programming interface (API) was used to access the generative pre-trained transformers (GPT) models, extract data from the narrative description of the falls, and perform the classification task. The GPT-4-turbo models were used for the classification task. Two independent reviewers manually coded the information, representing the gold standard for the classification task. Sensitivity, specificity, and accuracy were calculated to evaluate the performance of the task. : The analysis included 187 fall records with free-text event descriptions detailing the location of the fall and 93 records providing information about the presence or absence of an injury. GPT-4-turbo showed excellent performance, with specificity, sensitivity, and accuracy values of at least 0.913 for detecting the location and 0.953 for detecting the injury. : The GPT models effectively extracted and categorized the information, even though the text was not optimized for GPT-based analysis. This shows their potential for the use of LLMs in clinical risk management research.

摘要

跌倒 是 医院 内 最 常见 的 不良 事件,给 个人、其 家庭 以及 医疗 保健 系统 带来 了 相当 大 的 社会 和 经济 负担。本 研究 旨在 开发 并 实施 一种 利用 大 语言 模型 (LLMs)的 自动 编码 系统,以 从 医院 跌倒 记录 中 提取 自由 文本 信息 (包括 跌倒 地点 和 任何 由此 导致 的 损伤)并 进行 分类。:该 研究 使用 通过 事件 报告 系统 向 意大利 当地 一家 卫生 当局 的 风险 管理 服务 部门 报告 的 跌倒 的 叙述 性 描述 (根据 研究 协议,未 披露 名称)。使用 OpenAI 应用 编程 接口 (API)来 访问 生成 式 预 训练 变换器 (GPT)模型,从 跌倒 的 叙述 性 描述 中 提取 数据,并 执行 分类 任务。使用 GPT-4-turbo 模型 进行 分类 任务。两名 独立 评审员 手动 对 信息 进行 编码,代表 分类 任务 的 金 标准。计算 敏感性、特异性 和 准确性 以 评估 任务 的 性能。:分析 包括 187 份 有 详细 跌倒 地点 的 自由 文本 事件 描述 的 跌倒 记录 和 93 份 提供 有关 损伤 存在 与否 信息 的 记录。GPT-4-turbo 表现 出色,检测 跌倒 地点 的 特异性、敏感性 和 准确性 值 至少 为 0.913,检测 损伤 的 值 为 0.953。:即使 文本 未 针对 基于 GPT 的 分析 进行 优化,GPT 模型 也 能 有效地 提取 和 分类 信息。这 表明 它们 在 临床 风险 管理 研究 中 使用 大 语言 模型 的 潜力。

相似文献

7
Large language models can accurately populate Vascular Quality Initiative procedural databases using narrative operative reports.
J Vasc Surg. 2025 Apr;81(4):973-982. doi: 10.1016/j.jvs.2024.12.002. Epub 2024 Dec 16.
9
Reshaping free-text radiology notes into structured reports with generative question answering transformers.
Artif Intell Med. 2024 Aug;154:102924. doi: 10.1016/j.artmed.2024.102924. Epub 2024 Jun 26.

本文引用的文献

1
Using Large Language Models to Extract Core Injury Information From Emergency Department Notes.
J Korean Med Sci. 2024 Dec 2;39(46):e291. doi: 10.3346/jkms.2024.39.e291.
2
Automated identification of fall-related injuries in unstructured clinical notes.
Am J Epidemiol. 2025 Apr 8;194(4):1097-1105. doi: 10.1093/aje/kwae240.
3
Use of a Large Language Model to Identify and Classify Injuries With Free-Text Emergency Department Data.
JAMA Netw Open. 2024 May 1;7(5):e2413208. doi: 10.1001/jamanetworkopen.2024.13208.
4
Potential of Large Language Models in Health Care: Delphi Study.
J Med Internet Res. 2024 May 13;26:e52399. doi: 10.2196/52399.
5
Assessing the research landscape and clinical utility of large language models: a scoping review.
BMC Med Inform Decis Mak. 2024 Mar 12;24(1):72. doi: 10.1186/s12911-024-02459-6.
6
Adapted large language models can outperform medical experts in clinical text summarization.
Nat Med. 2024 Apr;30(4):1134-1142. doi: 10.1038/s41591-024-02855-5. Epub 2024 Feb 27.
7
Transforming clinical trials: the emerging roles of large language models.
Transl Clin Pharmacol. 2023 Sep;31(3):131-138. doi: 10.12793/tcp.2023.31.e16. Epub 2023 Sep 19.
9
Black-box assisted medical decisions: AI power vs. ethical physician care.
Med Health Care Philos. 2023 Sep;26(3):285-292. doi: 10.1007/s11019-023-10153-z. Epub 2023 Jun 5.
10
ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations.
Front Artif Intell. 2023 May 4;6:1169595. doi: 10.3389/frai.2023.1169595. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验