Suppr超能文献

一种用于工程应用中移动机器人全局路径规划的智能增强蚁群优化算法。

An Intelligently Enhanced Ant Colony Optimization Algorithm for Global Path Planning of Mobile Robots in Engineering Applications.

作者信息

Li Peng, Wei Lei, Wu Dongsu

机构信息

College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China.

Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.

出版信息

Sensors (Basel). 2025 Feb 21;25(5):1326. doi: 10.3390/s25051326.

Abstract

Global path planning remains a critical challenge in mobile robots, with ant colony optimization (ACO) being widely adopted for its swarm intelligence characteristics. To address the inherent limitations of ACO, this study proposes an intelligently enhanced ACO (IEACO) incorporating six innovative strategies. First, the early search efficiency is improved by implementing a non-uniform initial pheromone distribution. Second, the ε-greedy strategy is employed to adjust the state transition probability, thereby balancing exploration and exploitation. Third, adaptive dynamic adjustment of the exponents α and β is realized, dynamically balancing the pheromone and heuristic function. Fourth, a multi-objective heuristic function considering both target distance and turning angle is constructed to enhance the quality of node selection. Fifth, a dynamic global pheromone update strategy is designed to prevent the algorithm from prematurely converging to local optima. Finally, by introducing multi-objective performance indicators, the path planning problem is transformed into a multi-objective optimization problem, enabling more comprehensive path optimization. Systematic simulations and experimentation were performed to validate the effectiveness of IEACO. The simulation results confirm the efficacy of each improvement in IEACO and demonstrate its performance advantages over other algorithms. The experimental results further highlight the practical value of IEACO in solving global path planning problems for mobile robots.

摘要

全局路径规划仍然是移动机器人领域的一项关键挑战,蚁群优化算法(ACO)因其群体智能特性而被广泛采用。为了解决ACO的固有局限性,本研究提出了一种智能增强蚁群优化算法(IEACO),该算法包含六种创新策略。首先,通过实现非均匀初始信息素分布来提高早期搜索效率。其次,采用ε-贪婪策略调整状态转移概率,从而平衡探索和利用。第三,实现了指数α和β的自适应动态调整,动态平衡信息素和启发式函数。第四,构建了一个同时考虑目标距离和转弯角度的多目标启发式函数,以提高节点选择的质量。第五,设计了一种动态全局信息素更新策略,以防止算法过早收敛到局部最优。最后,通过引入多目标性能指标,将路径规划问题转化为多目标优化问题,实现更全面的路径优化。进行了系统的仿真和实验,以验证IEACO的有效性。仿真结果证实了IEACO中各项改进的有效性,并展示了其相对于其他算法的性能优势。实验结果进一步突出了IEACO在解决移动机器人全局路径规划问题中的实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf06/11902848/2d496b37c108/sensors-25-01326-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验