Shi Yongliang, Huang Shucheng, Li Mingxing
School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
School of Electrical and Information Engineering, Jingjiang College, Jiangsu University, Zhenjiang 212013, China.
Sensors (Basel). 2024 Dec 12;24(24):7950. doi: 10.3390/s24247950.
Path planning is a core technology for mobile robots. However, existing state-of-the-art methods suffer from issues such as excessive path redundancy, too many turning points, and poor environmental adaptability. To address these challenges, this paper proposes a novel global and local fusion path-planning algorithm. For global path planning, we reduce path redundancy and excessive turning points by designing a new heuristic function and constructing an improved path generation method. For local path planning, we propose an environment-aware dynamic parameter adjustment strategy, incorporating deviation and avoidance dynamic obstacle evaluation factors, thus addressing issues of local optima and timely avoidance of dynamic obstacles. Finally, we fuse those global and local path-planning improvements to form our fusion path-planning algorithm, which can enhance the robot's adaptability to complex scenarios while reducing path redundancy and turning points. Simulation experiments demonstrate that the improved fusion path-planning algorithm not only effectively addresses existing issues but also operates with higher efficiency.
路径规划是移动机器人的核心技术。然而,现有的先进方法存在路径冗余过多、转折点过多以及环境适应性差等问题。为应对这些挑战,本文提出了一种新颖的全局与局部融合路径规划算法。对于全局路径规划,我们通过设计新的启发式函数并构建改进的路径生成方法来减少路径冗余和过多的转折点。对于局部路径规划,我们提出了一种环境感知动态参数调整策略,纳入偏差和避障动态障碍物评估因素,从而解决局部最优问题并及时避开动态障碍物。最后,我们融合这些全局和局部路径规划的改进措施,形成我们的融合路径规划算法,该算法可以提高机器人对复杂场景的适应性,同时减少路径冗余和转折点。仿真实验表明,改进后的融合路径规划算法不仅有效解决了现有问题,而且运行效率更高。