Suppr超能文献

用于莫里斯水迷宫研究中增强型自动行为分析的人工智能驱动框架。

AI-Driven Framework for Enhanced and Automated Behavioral Analysis in Morris Water Maze Studies.

作者信息

Lakatos István, Bogacsovics Gergő, Tiba Attila, Priksz Dániel, Juhász Béla, Erdélyi Rita, Berényi Zsuzsa, Bácskay Ildikó, Ujvárosy Dóra, Harangi Balázs

机构信息

Faculty of Informatics, University of Debrecen, H-4028 Debrecen, Hungary.

Department of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032 Debrecen, Hungary.

出版信息

Sensors (Basel). 2025 Mar 4;25(5):1564. doi: 10.3390/s25051564.

Abstract

The Morris Water Maze (MWM) is a widely used behavioral test to assess the spatial learning and memory of animals, particularly valuable in studying neurodegenerative disorders such as Alzheimer's disease. Traditional methods for analyzing MWM experiments often face limitations in capturing the complexity of animal behaviors. In this study, we present a novel AI-based automated framework to process and evaluate MWM test videos, aiming to enhance behavioral analysis through machine learning. Our pipeline involves video preprocessing, animal detection using convolutional neural networks (CNNs), trajectory tracking, and postprocessing to derive detailed behavioral features. We propose concentric circle segmentation of the pool next to the quadrant-based division, and we extract 32 behavioral metrics for each zone, which are employed in classification tasks to differentiate between younger and older animals. Several machine learning classifiers, including random forest and neural networks, are evaluated, with feature selection techniques applied to improve the classification accuracy. Our results demonstrate a significant improvement in classification performance, particularly through the integration of feature sets derived from concentric zone analyses. This automated approach offers a robust solution for MWM data processing, providing enhanced precision and reliability, which is critical for the study of neurodegenerative disorders.

摘要

莫里斯水迷宫(MWM)是一种广泛用于评估动物空间学习和记忆的行为测试,在研究诸如阿尔茨海默病等神经退行性疾病方面具有特别重要的价值。传统的分析MWM实验的方法在捕捉动物行为的复杂性方面常常面临局限性。在本研究中,我们提出了一种基于人工智能的新型自动化框架来处理和评估MWM测试视频,旨在通过机器学习增强行为分析。我们的流程包括视频预处理、使用卷积神经网络(CNN)进行动物检测、轨迹跟踪以及后处理以得出详细的行为特征。我们提出在基于象限划分的基础上对水池进行同心圆分割,并为每个区域提取32个行为指标,这些指标用于分类任务以区分年轻和年长动物。我们评估了包括随机森林和神经网络在内的几种机器学习分类器,并应用特征选择技术来提高分类准确率。我们的结果表明分类性能有显著提高,特别是通过整合从同心圆区域分析得出的特征集。这种自动化方法为MWM数据处理提供了一个强大的解决方案,提高了精度和可靠性,这对于神经退行性疾病的研究至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9933/11902479/7811cce37f7a/sensors-25-01564-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验