Suppr超能文献

利用人工智能增强临床试验结果预测:一项系统综述。

Enhancing clinical trial outcome prediction with artificial intelligence: a systematic review.

作者信息

Qian Long, Lu Xin, Haris Parvez, Zhu Jianyong, Li Shuo, Yang Yingjie

机构信息

Faculty of Computing Engineering Media, De Montfort University, Leicester, UK.

Faculty of Health & Life Sciences, De Montfort University, Leicester, UK.

出版信息

Drug Discov Today. 2025 Apr;30(4):104332. doi: 10.1016/j.drudis.2025.104332. Epub 2025 Mar 15.

Abstract

Clinical trials are pivotal in drug development yet fraught with uncertainties and resource-intensive demands. The application of AI models to forecast trial outcomes could mitigate failures and expedite the drug discovery process. This review discusses AI methodologies that impact clinical trial outcomes, focusing on clinical text embedding, trial multimodal learning, and prediction techniques, while addressing practical challenges and opportunities.

摘要

临床试验在药物研发中起着关键作用,但充满了不确定性且资源需求巨大。应用人工智能模型来预测试验结果可以减少失败并加快药物发现过程。本综述讨论了影响临床试验结果的人工智能方法,重点关注临床文本嵌入、试验多模态学习和预测技术,同时探讨了实际挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验