Al-Shannaq Moy'awiah A, Nasrawi Areen, Bsoul Abed Al-Raouf K, Saifan Ahmad A
Faculty of Information Technolgy and Computer Sciences, Yarmouk university, Irbid, Jordan.
Sci Rep. 2025 Mar 17;15(1):9129. doi: 10.1038/s41598-025-89647-0.
Cardiovascular diseases are non-communicable diseases that are considered the leading cause of death worldwide accounting for 17.9 million fatalities. Auscultation of heart sounds is the most common and valuable way of diagnosing heart diseases. Normal heart sounds have a special rhythmic pattern as an indicator of heart integrity. Many experts concentrate on diagnosing the heart by automatic digital auscultation systems which find various distinguishable characteristics for heart sound classifications. This can decrease the mortality rate for cardiovascular diseases and enhance the patient's quality of life. This study aims to propose a real-time heart sound recognition system to classify both normal and abnormal phonocardiograms with the ability to define the abnormality type if existed. Digital signal processing methods, by applying the fast Fourier transform, filtering techniques, and the dual-tree complex wavelet transform, with machine learning classification algorithms are employed to segment the input phonocardiogram signal, extract meaningful features, and find the appropriate class for the input signal. We utilized three datasets, the PhysioNet of 1395, the GitHub of 800, and the PASCAL of 100 files segmented into three cardiac cycles. The proposed solution relies on the support vector machine and the long-short term memory neural network to distinguish between normal and abnormal heartbeat sounds and to recognize the type of abnormality (in the case distinguished) respectively. The results show that the proposed approach for normal/abnormal classification achieves an overall accuracy of 96.0 and 98.1%, sensitivity of 94.4 and 84.2%, and specificity of 64.9 and 98.4% for two and one support vector machines respectively among the state-of-the-art solutions. The long short-term memory model is also a well-known efficient classifier for temporal data, and the results show the accuracy of 99.2, 99.5, 98.6, and 99.4% for four (aortic stenosis (AS), mitral regurgitation (MR), mitral stenosis (MS), and mitral valve prolapse (MVP)), five (AS, MR, MS, MVP, and normal), six (AS, MR, MS, MVP, extrahls, and extrasystole), and seven classes (AS, MR, MS, MVP, extrahls, extrasystole, and normal). Furthermore, we found an efficient automatic segmentation method that was tested with the PASCAL database achieving a total error of 867,525.6 and 23,590.3 ms for datasets A and B respectively, with a computational time of 0.04 s to segment one cardiac cycle.
心血管疾病是非传染性疾病,被认为是全球主要死因,造成1790万人死亡。心音听诊是诊断心脏病最常见且有价值的方法。正常心音有特殊的节律模式,是心脏完整性的指标。许多专家致力于通过自动数字听诊系统诊断心脏疾病,该系统能找到心音分类的各种可区分特征。这可以降低心血管疾病的死亡率,提高患者的生活质量。本研究旨在提出一种实时心音识别系统,用于对正常和异常心音图进行分类,并在存在异常时能够定义异常类型。通过应用快速傅里叶变换、滤波技术和双树复小波变换等数字信号处理方法,结合机器学习分类算法,对输入的心音图信号进行分割、提取有意义的特征,并为输入信号找到合适的类别。我们使用了三个数据集,分别是1395个记录的PhysioNet数据集、800个记录的GitHub数据集以及100个文件并分割为三个心动周期的PASCAL数据集。所提出的解决方案依靠支持向量机和长短期记忆神经网络分别区分正常和异常心搏音,并识别异常类型(在区分出异常的情况下)。结果表明,在所提出的正常/异常分类方法中,对于两个和一个支持向量机,在现有解决方案中分别实现了96.0%和98.1%的总体准确率、94.4%和84.2%的灵敏度以及64.9%和98.4%的特异性。长短期记忆模型也是一种著名的用于处理时间数据的高效分类器,对于四类(主动脉瓣狭窄(AS)、二尖瓣反流(MR)、二尖瓣狭窄(MS)和二尖瓣脱垂(MVP))、五类(AS、MR、MS、MVP和正常)、六类(AS、MR、MS、MVP、额外心音和早搏)和七类(AS、MR、MS、MVP、额外心音、早搏和正常),结果显示准确率分别为99.2%、99.5%、98.6%和99.4%。此外,我们发现了一种有效的自动分割方法,在PASCAL数据库上进行测试时,数据集A和B的总误差分别为867525.6毫秒和23590.3毫秒,分割一个心动周期的计算时间为0.04秒。