Suppr超能文献

用于处理和分类未分段心音信号的机器学习算法:适用于可穿戴设备的高效边缘计算解决方案。

Machine Learning Algorithms for Processing and Classifying Unsegmented Phonocardiographic Signals: An Efficient Edge Computing Solution Suitable for Wearable Devices.

机构信息

Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy.

Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73010 Arnesano, Italy.

出版信息

Sensors (Basel). 2024 Jun 14;24(12):3853. doi: 10.3390/s24123853.

Abstract

The phonocardiogram (PCG) can be used as an affordable way to monitor heart conditions. This study proposes the training and testing of several classifiers based on SVMs (support vector machines), k-NN (k-Nearest Neighbor), and NNs (neural networks) to perform binary ("Normal"/"Pathologic") and multiclass ("Normal", "CAD" (coronary artery disease), "MVP" (mitral valve prolapse), and "Benign" (benign murmurs)) classification of PCG signals, without heart sound segmentation algorithms. Two datasets of 482 and 826 PCG signals from the Physionet/CinC 2016 dataset are used to train the binary and multiclass classifiers, respectively. Each PCG signal is pre-processed, with spike removal, denoising, filtering, and normalization; afterward, it is divided into 5 s frames with a 1 s shift. Subsequently, a feature set is extracted from each frame to train and test the binary and multiclass classifiers. Concerning the binary classification, the trained classifiers yielded accuracies ranging from 92.4 to 98.7% on the test set, with memory occupations from 92.7 kB to 11.1 MB. Regarding the multiclass classification, the trained classifiers achieved accuracies spanning from 95.3 to 98.6% on the test set, occupying a memory portion from 233 kB to 14.1 MB. The NNs trained and tested in this work offer the best trade-off between performance and memory occupation, whereas the trained k-NN models obtained the best performance at the cost of large memory occupation (up to 14.1 MB). The classifiers' performance slightly depends on the signal quality, since a denoising step is performed during pre-processing. To this end, the signal-to-noise ratio (SNR) was acquired before and after the denoising, indicating an improvement between 15 and 30 dB. The trained and tested models occupy relatively little memory, enabling their implementation in resource-limited systems.

摘要

心音图(PCG)可作为一种经济实惠的方式来监测心脏状况。本研究提出了基于支持向量机(SVM)、k-最近邻(k-NN)和神经网络(NN)的几种分类器的训练和测试,以对 PCG 信号进行二进制(“正常”/“异常”)和多类(“正常”、“CAD”(冠状动脉疾病)、“MVP”(二尖瓣脱垂)和“良性”(良性杂音))分类,而无需使用心音分段算法。该研究使用来自 Physionet/CinC 2016 数据集的 482 和 826 个 PCG 信号数据集分别训练二进制和多类分类器。每个 PCG 信号都经过预处理,包括去除尖峰、去噪、滤波和归一化;然后,将其分为 5 秒的帧,帧间有 1 秒的间隔。随后,从每个帧中提取特征集来训练和测试二进制和多类分类器。在二进制分类方面,训练后的分类器在测试集上的准确率在 92.4%到 98.7%之间,内存占用从 92.7kB 到 11.1MB 不等。在多类分类方面,训练后的分类器在测试集上的准确率在 95.3%到 98.6%之间,内存占用从 233kB 到 14.1MB 不等。在这项工作中训练和测试的神经网络在性能和内存占用方面提供了最佳的权衡,而训练的 k-NN 模型则以占用大量内存(高达 14.1MB)为代价获得了最佳性能。分类器的性能略取决于信号质量,因为在预处理过程中执行了降噪步骤。为此,在降噪前后获取了信噪比(SNR),表明 SNR 提高了 15 到 30dB。训练和测试的模型占用的内存相对较少,使其能够在资源有限的系统中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73dc/11207414/0f1ee56930f8/sensors-24-03853-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验