Choi Hangnyoung, Hong JaeSeong, Kang Hyun Goo, Park Min-Hyeon, Ha Sungji, Lee Junghan, Yoon Sangchul, Kim Daeseong, Park Yu Rang, Cheon Keun-Ah
Department of Child and Adolescent Psychiatry, Autism and Developmental Disorder Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Department of Psychiatry and the Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
NPJ Digit Med. 2025 Mar 17;8(1):164. doi: 10.1038/s41746-025-01547-9.
Attention-deficit/hyperactivity disorder (ADHD), characterized by diagnostic complexity and symptom heterogeneity, is a prevalent neurodevelopmental disorder. Here, we explored the machine learning (ML) analysis of retinal fundus photographs as a noninvasive biomarker for ADHD screening and stratification of executive function (EF) deficits. From April to October 2022, 323 children and adolescents with ADHD were recruited from two tertiary South Korean hospitals, and the age- and sex-matched individuals with typical development were retrospectively collected. We used the AutoMorph pipeline to extract retinal features and used four types of ML models for ADHD screening and EF subdomain prediction, and we adopted the Shapely additive explanation method. ADHD screening models achieved 95.5%-96.9% AUROC. For EF function stratification, the visual and auditory subdomains showed strong (AUROC > 85%) and poor performances, respectively. Our analysis of retinal fundus photographs demonstrated potential as a noninvasive biomarker for ADHD screening and EF deficit stratification in the visual attention domain.
注意缺陷多动障碍(ADHD)是一种常见的神经发育障碍,其诊断复杂且症状具有异质性。在此,我们探索了利用机器学习(ML)分析眼底照片,将其作为ADHD筛查及执行功能(EF)缺陷分层的一种非侵入性生物标志物。2022年4月至10月,从韩国两家三级医院招募了323名患有ADHD的儿童和青少年,并回顾性收集了年龄和性别匹配的发育正常个体。我们使用AutoMorph管道提取视网膜特征,并使用四种类型的ML模型进行ADHD筛查和EF子域预测,同时采用了Shapely加性解释方法。ADHD筛查模型的曲线下面积(AUROC)达到95.5%-96.9%。对于EF功能分层,视觉和听觉子域分别表现出较高(AUROC>85%)和较差的性能。我们对眼底照片的分析表明,其有潜力作为一种非侵入性生物标志物,用于ADHD筛查及视觉注意力领域的EF缺陷分层。