Liu An-An, Cui Ran, Zong Xia, Jia Jianhong, Hu Yusi, Zhao Jing-Ya, Pang Dai-Wen
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China.
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
Nat Protoc. 2025 Mar 17. doi: 10.1038/s41596-024-01133-5.
Quantum dots (QDs) exhibit fluorescence properties with promising prospects for biomedical applications; however, the QDs synthesized in organic solvents shows poor biocompatibility, limiting their use in biological systems. We developed an approach for synthesizing QDs in live cells by coupling a series of intracellular metabolic pathways in a precise spatial and temporal sequence. We have validated this approach in yeast (Saccharomyces cerevisiae), Staphylococcus aureus, Michigan Cancer Foundation-7 (MCF-7) and Madin-Darby canine kidney (MDCK) cells. The intracellularly synthesized QDs are inherently stable and biocompatible, making them suitable for the direct in situ labeling of cells and cell-derived vesicles. Here, we provide an optimized workflow for the live-cell synthesis of QDs by using S. cerevisiae, S. aureus or MCF-7 cells. In addition, we detail a cell-free aqueous synthetic system (quasi-biosynthesis) containing enzymes, electrolytes, peptides and coenzymes, which closely mimics the intracellular synthetic conditions used in our cell culture system. In this solution, we synthesize biocompatible ultrasmall QDs that are easier to purify and characterize than those synthesized in cells. The live-cell-synthesized QDs can be used for bioimaging and microvesicle detection, whereas the quasi-biosynthesized QDs are suitable for applications such as biodetection, biolabeling and real-time imaging. The procedure can be completed in 3-4 d for live-cell QD synthesis and 2 h for the quasi-biosynthesis of QDs. The procedure is suitable for users with expertise in chemistry, biology, materials science and synthetic biology. This approach encourages interested researchers to engage in the field of QDs and develop further biomedical applications.
量子点(QDs)具有荧光特性,在生物医学应用方面前景广阔;然而,在有机溶剂中合成的量子点生物相容性较差,限制了它们在生物系统中的应用。我们通过精确地按空间和时间顺序耦合一系列细胞内代谢途径,开发了一种在活细胞中合成量子点的方法。我们已在酵母(酿酒酵母)、金黄色葡萄球菌、密歇根癌症基金会 -7(MCF -7)和麦迪逊 - 达比犬肾(MDCK)细胞中验证了该方法。细胞内合成的量子点本质上稳定且具有生物相容性,使其适用于细胞和细胞衍生囊泡的直接原位标记。在此,我们提供了一种使用酿酒酵母、金黄色葡萄球菌或MCF -7细胞进行量子点活细胞合成的优化工作流程。此外,我们详细介绍了一种无细胞水性合成系统(准生物合成),该系统包含酶、电解质、肽和辅酶,紧密模拟了我们细胞培养系统中使用的细胞内合成条件。在这种溶液中,我们合成了生物相容性超小量子点,与在细胞中合成的量子点相比,它们更易于纯化和表征。活细胞合成的量子点可用于生物成像和微囊泡检测,而准生物合成的量子点适用于生物检测、生物标记和实时成像等应用。活细胞量子点合成过程可在3 - 4天内完成,量子点准生物合成过程可在2小时内完成。该方法适用于具有化学、生物学、材料科学和合成生物学专业知识的用户。这种方法鼓励感兴趣的研究人员涉足量子点领域并开发更多生物医学应用。