Gasser Hans-Christof, Oyarzún Diego A, Alfaro Javier Antonio, Rajan Ajitha
School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom.
School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, United Kingdom.
Protein Eng Des Sel. 2025 Jan 10;38. doi: 10.1093/protein/gzaf003.
ProteinMPNN is widely used in protein design workflows due to its ability to identify amino acid sequences that fold into specific 3D protein structures. In our work, we adjust ProteinMPNN to design proteins for a given 3D protein structure with reduced immune-visibility to cytotoxic T lymphocytes that recognize proteins via the MHC-I pathway. To achieve this, we developed a novel framework that integrates direct preference optimization (DPO)-a tuning method originally designed for large language models-with MHC-I peptide presentation predictions. This approach fosters the generation of designs with fewer MHC-I epitopes while preserving the protein's original structure. Our results demonstrate that DPO effectively reduces MHC-I visibility without compromising the structural integrity of the proteins.
ProteinMPNN因其能够识别折叠成特定三维蛋白质结构的氨基酸序列而被广泛应用于蛋白质设计工作流程中。在我们的工作中,我们对ProteinMPNN进行了调整,以针对给定的三维蛋白质结构设计蛋白质,从而降低细胞毒性T淋巴细胞通过MHC-I途径识别蛋白质时的免疫可见性。为实现这一目标,我们开发了一种新颖的框架,该框架将直接偏好优化(DPO)——一种最初为大语言模型设计的调优方法——与MHC-I肽呈递预测相结合。这种方法有助于生成具有较少MHC-I表位的设计,同时保留蛋白质的原始结构。我们的结果表明,DPO能有效降低MHC-I可见性,同时不损害蛋白质的结构完整性。