Chen Shutao, Yan Ke, Li Xuelong, Liu Bin
IEEE Trans Neural Netw Learn Syst. 2025 Mar 18;PP. doi: 10.1109/TNNLS.2025.3540291.
Protein complex structural data are growing at an unprecedented pace, but its complexity and diversity pose significant challenges for protein function research. Although deep learning models have been widely used to capture the syntactic structure, word semantics, or semantic meanings of polypeptide and protein sequences, these models often overlook the complex contextual information of sequences. Here, we propose interpretable interaction deep learning (IIDL)-peptide-protein interaction (PepPI), a deep learning model designed to tackle these challenges using data-driven and interpretable pragmatic analysis to profile PepPIs. IIDL-PepPI constructs bidirectional attention modules to represent the contextual information of peptides and proteins, enabling pragmatic analysis. It then adopts a progressive transfer learning framework to simultaneously predict PepPIs and identify binding residues for specific interactions, providing a solution for multilevel in-depth profiling. We validate the performance and robustness of IIDL-PepPI in accurately predicting peptide-protein binary interactions and identifying binding residues compared with the state-of-the-art methods. We further demonstrate the capability of IIDL-PepPI in peptide virtual drug screening and binding affinity assessment, which is expected to advance artificial intelligence-based peptide drug discovery and protein function elucidation.
蛋白质复合物的结构数据正以前所未有的速度增长,但其复杂性和多样性给蛋白质功能研究带来了重大挑战。尽管深度学习模型已被广泛用于捕捉多肽和蛋白质序列的句法结构、词法语义或语义含义,但这些模型往往忽略了序列的复杂上下文信息。在此,我们提出了可解释交互深度学习(IIDL)-肽-蛋白质相互作用(PepPI),这是一种深度学习模型,旨在通过数据驱动和可解释的语用分析来解决这些挑战,以剖析肽-蛋白质相互作用。IIDL-PepPI构建双向注意力模块来表示肽和蛋白质的上下文信息,从而实现语用分析。然后,它采用渐进式迁移学习框架来同时预测肽-蛋白质相互作用并识别特定相互作用的结合残基,为多级深度剖析提供了一种解决方案。与现有最先进的方法相比,我们验证了IIDL-PepPI在准确预测肽-蛋白质二元相互作用和识别结合残基方面的性能和稳健性。我们进一步展示了IIDL-PepPI在肽虚拟药物筛选和结合亲和力评估方面的能力,有望推动基于人工智能的肽药物发现和蛋白质功能阐释。