Suppr超能文献

用于复杂卷积神经网络和跨域基准测试的多级融合深度图像特征感知

Deep image features sensing with multilevel fusion for complex convolution neural networks & cross domain benchmarks.

作者信息

Shabir Aiza, Ahmed Khawaja Tehseen, Mahmood Arif, Garay Helena, Prado González Luis Eduardo, Ashraf Imran

机构信息

Institute of Computer Science and Information Technology, The Women University Multan, Multan, Pakistan.

Department of Computer Science, Bahauddin Zakariya University, Multan, Pakistan.

出版信息

PLoS One. 2025 Mar 18;20(3):e0317863. doi: 10.1371/journal.pone.0317863. eCollection 2025.

Abstract

Efficient image retrieval from a variety of datasets is crucial in today's digital world. Visual properties are represented using primitive image signatures in Content Based Image Retrieval (CBIR). Feature vectors are employed to classify images into predefined categories. This research presents a unique feature identification technique based on suppression to locate interest points by computing productive sum of pixel derivatives by computing the differentials for corner scores. Scale space interpolation is applied to define interest points by combining color features from spatially ordered L2 normalized coefficients with shape and object information. Object based feature vectors are formed using high variance coefficients to reduce the complexity and are converted into bag-of-visual-words (BoVW) for effective retrieval and ranking. The presented method encompass feature vectors for information synthesis and improves the discriminating strength of the retrieval system by extracting deep image features including primitive, spatial, and overlayed using multilayer fusion of Convolutional Neural Networks(CNNs). Extensive experimentation is performed on standard image datasets benchmarks, including ALOT, Cifar-10, Corel-10k, Tropical Fruits, and Zubud. These datasets cover wide range of categories including shape, color, texture, spatial, and complicated objects. Experimental results demonstrate considerable improvements in precision and recall rates, average retrieval precision and recall, and mean average precision and recall rates across various image semantic groups within versatile datasets. The integration of traditional feature extraction methods fusion with multilevel CNN advances image sensing and retrieval systems, promising more accurate and efficient image retrieval solutions.

摘要

在当今数字世界中,从各种数据集中高效检索图像至关重要。在基于内容的图像检索(CBIR)中,视觉属性是使用原始图像签名来表示的。特征向量用于将图像分类到预定义的类别中。本研究提出了一种基于抑制的独特特征识别技术,通过计算像素导数的有效总和(通过计算角点分数的微分)来定位兴趣点。应用尺度空间插值,通过将来自空间有序的L2归一化系数的颜色特征与形状和对象信息相结合来定义兴趣点。基于对象的特征向量使用高方差系数形成,以降低复杂度,并转换为视觉词袋(BoVW)以进行有效的检索和排序。所提出的方法包含用于信息合成的特征向量,并通过使用卷积神经网络(CNN)的多层融合提取包括原始、空间和叠加的深度图像特征,提高了检索系统的辨别力。在标准图像数据集基准上进行了广泛的实验,包括ALOT、Cifar-10、Corel-10k、热带水果和Zubud。这些数据集涵盖了广泛的类别,包括形状、颜色、纹理、空间和复杂对象。实验结果表明,在通用数据集中的各种图像语义组中,精度和召回率、平均检索精度和召回率以及平均平均精度和召回率都有显著提高。传统特征提取方法与多级CNN的融合推进了图像传感和检索系统,有望提供更准确、高效的图像检索解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72c/11918433/152798611138/pone.0317863.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验