Suppr超能文献

DAISY:一种应用于宽基线立体视觉的高效密集描述符。

DAISY: an efficient dense descriptor applied to wide-baseline stereo.

机构信息

Ecole Polytechnic Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 May;32(5):815-30. doi: 10.1109/TPAMI.2009.77.

Abstract

In this paper, we introduce a local image descriptor, DAISY, which is very efficient to compute densely. We also present an EM-based algorithm to compute dense depth and occlusion maps from wide-baseline image pairs using this descriptor. This yields much better results in wide-baseline situations than the pixel and correlation-based algorithms that are commonly used in narrow-baseline stereo. Also, using a descriptor makes our algorithm robust against many photometric and geometric transformations. Our descriptor is inspired from earlier ones such as SIFT and GLOH but can be computed much faster for our purposes. Unlike SURF, which can also be computed efficiently at every pixel, it does not introduce artifacts that degrade the matching performance when used densely. It is important to note that our approach is the first algorithm that attempts to estimate dense depth maps from wide-baseline image pairs, and we show that it is a good one at that with many experiments for depth estimation accuracy, occlusion detection, and comparing it against other descriptors on laser-scanned ground truth scenes. We also tested our approach on a variety of indoor and outdoor scenes with different photometric and geometric transformations and our experiments support our claim to being robust against these.

摘要

在本文中,我们引入了一种局部图像描述符 DAISY,它非常高效,可以密集地计算。我们还提出了一种基于 EM 的算法,使用该描述符从宽基线图像对中计算密集的深度和遮挡图。与在窄基线立体中常用的基于像素和相关的算法相比,这在宽基线情况下产生了更好的结果。此外,使用描述符使我们的算法能够抵抗许多光度和几何变换。我们的描述符受到了早期的描述符(如 SIFT 和 GLOH)的启发,但为了我们的目的,可以更快地计算。与也可以在每个像素上高效计算的 SURF 不同,它不会引入在密集使用时会降低匹配性能的伪影。需要注意的是,我们的方法是第一个尝试从宽基线图像对中估计密集深度图的算法,我们通过大量的深度估计准确性、遮挡检测实验以及将其与激光扫描地面实况场景上的其他描述符进行比较来证明这是一种很好的方法。我们还在各种具有不同光度和几何变换的室内和室外场景上测试了我们的方法,我们的实验支持我们对这些变换具有鲁棒性的说法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验