Suppr超能文献

临床决策支持系统对医学生病例解决能力的影响:一项聚焦小组比较研究

Impact of Clinical Decision Support Systems on Medical Students' Case-Solving Performance: Comparison Study with a Focus Group.

作者信息

Montagna Marco, Chiabrando Filippo, De Lorenzo Rebecca, Rovere Querini Patrizia

机构信息

School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, 20132, Italy.

Unit of Medical Specialties and Healthcare Continuity, IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

JMIR Med Educ. 2025 Mar 18;11:e55709. doi: 10.2196/55709.

Abstract

BACKGROUND

Health care practitioners use clinical decision support systems (CDSS) as an aid in the crucial task of clinical reasoning and decision-making. Traditional CDSS are online repositories (ORs) and clinical practice guidelines (CPG). Recently, large language models (LLMs) such as ChatGPT have emerged as potential alternatives. They have proven to be powerful, innovative tools, yet they are not devoid of worrisome risks.

OBJECTIVE

This study aims to explore how medical students perform in an evaluated clinical case through the use of different CDSS tools.

METHODS

The authors randomly divided medical students into 3 groups, CPG, n=6 (38%); OR, n=5 (31%); and ChatGPT, n=5 (31%); and assigned each group a different type of CDSS for guidance in answering prespecified questions, assessing how students' speed and ability at resolving the same clinical case varied accordingly. External reviewers evaluated all answers based on accuracy and completeness metrics (score: 1-5). The authors analyzed and categorized group scores according to the skill investigated: differential diagnosis, diagnostic workup, and clinical decision-making.

RESULTS

Answering time showed a trend for the ChatGPT group to be the fastest. The mean scores for completeness were as follows: CPG 4.0, OR 3.7, and ChatGPT 3.8 (P=.49). The mean scores for accuracy were as follows: CPG 4.0, OR 3.3, and ChatGPT 3.7 (P=.02). Aggregating scores according to the 3 students' skill domains, trends in differences among the groups emerge more clearly, with the CPG group that performed best in nearly all domains and maintained almost perfect alignment between its completeness and accuracy.

CONCLUSIONS

This hands-on session provided valuable insights into the potential perks and associated pitfalls of LLMs in medical education and practice. It suggested the critical need to include teachings in medical degree courses on how to properly take advantage of LLMs, as the potential for misuse is evident and real.

摘要

背景

医疗保健从业者使用临床决策支持系统(CDSS)辅助临床推理和决策这一关键任务。传统的CDSS是在线知识库(OR)和临床实践指南(CPG)。最近,诸如ChatGPT之类的大语言模型(LLM)已成为潜在的替代方案。它们已被证明是强大的创新工具,但也并非没有令人担忧的风险。

目的

本研究旨在探讨医学生在使用不同CDSS工具的情况下,在经过评估的临床病例中的表现。

方法

作者将医学生随机分为3组,CPG组,n = 6(38%);OR组,n = 5(31%);ChatGPT组,n = 5(31%);并为每组分配一种不同类型的CDSS,以指导回答预先设定的问题,评估学生解决同一临床病例的速度和能力如何相应变化。外部评审员根据准确性和完整性指标(评分:1 - 5)对所有答案进行评估。作者根据所研究的技能对组分数进行分析和分类:鉴别诊断、诊断检查和临床决策。

结果

回答时间显示ChatGPT组有最快的趋势。完整性的平均分数如下:CPG组4.0,OR组3.7,ChatGPT组3.8(P = 0.49)。准确性的平均分数如下:CPG组4.0,OR组3.3,ChatGPT组3.7(P = 0.02)。根据3个学生技能领域汇总分数,组间差异趋势更明显,CPG组在几乎所有领域表现最佳,其完整性和准确性之间保持几乎完美的一致性。

结论

这次实践课程为大语言模型在医学教育和实践中的潜在优势和相关陷阱提供了有价值的见解。它表明在医学学位课程中迫切需要纳入关于如何正确利用大语言模型的教学内容,因为滥用的可能性是明显且真实的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dca/11936302/dd8df3ff00ae/mededu-v11-e55709-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验