Suppr超能文献

用三态隐马尔可夫模型对头颈部鳞状细胞癌患者隐匿性淋巴结转移进行建模。

Modelling occult lymph node metastases in HNSCC patients with a trinary state hidden Markov model.

作者信息

Pérez Haas Yoel, Ludwig Roman, Looman Esmée Lauren, Grégoire Vincent, Balermpas Panagiotis, Unkelbach Jan

机构信息

Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland.

Centre Léon Bérard, Radiation Oncology, Lyon, France.

出版信息

Phys Med Biol. 2025 Apr 10;70(8). doi: 10.1088/1361-6560/adc235.

Abstract

Head-and-neck squamous cell carcinoma frequently metastasize through lymphatic system. Occult metastases are challenging for designing radiotherapy treatment volumes. Literature values indicate that around 20% of lymph node metastases are clinically undetected. However, recent data suggest that this value is only representative for level II whereas the rate of occult metastases is substantially higher in levels III and IV.We propose a trinary-state Hidden Markov Model to describe ipsilateral lymphatic tumor progression over time. Each lymph node level (LNL) can be in one of three states: healthy, microscopically (pathologically) involved, or macroscopically (clinically) involved. In each time step, a healthy LNL may become microscopically involved due to spread from the primary tumor or an involved upstream LNL. In addition, a microscopically involved LNL may transition to macroscopically involved. The probability of occult metastases is obtained as the conditional probability of being in the microscopically involved state given the individual patient's macroscopic involvement. Model parameters are learned from a dataset of 550 patients, including 263 with both pathological and clinical LNL involvement reported.For oropharyngeal SCC, the model estimates an occult metastases probability below 5% in LNL IV unless LNL III is clinically positive, suggesting potential for reducing elective clinical target volumes. The model's estimated rate of clinically undetected metastases is 82%, 41%, and 34% for LNL II, III, and IV, respectively, which agrees with the data.The proposed trinary-state HMM represents a methodological extension to a previously published binary-state HMM. The binary HMM distinguished the microscopic and macroscopic involvement via the concept of sensitivity, which may underestimate the risk of occult metastases. The trinary HMM addresses this problem and represents a more natural description of tumor progression.

摘要

头颈部鳞状细胞癌常通过淋巴系统转移。隐匿性转移对于设计放射治疗靶区具有挑战性。文献数据表明,约20%的淋巴结转移在临床上无法检测到。然而,最近的数据显示,该数值仅适用于Ⅱ区,而Ⅲ区和Ⅳ区隐匿性转移的发生率要高得多。我们提出了一种三状态隐马尔可夫模型来描述同侧淋巴系统肿瘤随时间的进展。每个淋巴结水平(LNL)可处于三种状态之一:健康、显微镜下(病理)受累或肉眼(临床)受累。在每个时间步,健康的LNL可能由于原发肿瘤或上游受累LNL的扩散而在显微镜下受累。此外,显微镜下受累的LNL可能转变为肉眼受累。隐匿性转移的概率是在个体患者肉眼受累的情况下处于显微镜下受累状态的条件概率。模型参数是从550例患者的数据集中学习得到的,其中包括263例同时报告了病理和临床LNL受累情况的患者。对于口咽鳞状细胞癌,该模型估计,除非Ⅲ区临床阳性,否则Ⅳ区LNL隐匿性转移概率低于5%,这表明有可能缩小选择性临床靶区体积。该模型估计的Ⅱ区、Ⅲ区和Ⅳ区临床未检测到转移的发生率分别为82%、41%和34%,与数据相符。所提出的三状态隐马尔可夫模型是对先前发表的二状态隐马尔可夫模型的方法扩展。二状态隐马尔可夫模型通过敏感性概念区分显微镜下和肉眼受累情况,这可能低估了隐匿性转移的风险。三状态隐马尔可夫模型解决了这个问题,更自然地描述了肿瘤进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验