Suppr超能文献

肉鸡叫声的自动检测:一种用于肉鸡叫声监测的机器学习方法

Automated detection of broiler vocalizations a machine learning approach for broiler chicken vocalization monitoring.

作者信息

Soster Patricia de Carvalho, Grzywalski Tomasz, Hou Yuanbo, Thomas Pieter, Dedeurwaerder Annelike, De Gussem Maarten, Tuyttens Frank, Devos Paul, Botteldooren Dick, Antonissen Gunther

机构信息

Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium; Poulpharm Bvba, Izegem, Belgium.

Department of Information Technology, Ghent University, 9052 Gent, Belgium.

出版信息

Poult Sci. 2025 May;104(5):104962. doi: 10.1016/j.psj.2025.104962. Epub 2025 Mar 4.

Abstract

The poultry industry relies on highly efficient production systems. For sustainable food production, where maintaining broiler welfare is crucial, it is essential to have robust data collection systems and automated methods for assessing broiler health and welfare. This paper presents the development and implementation of an acoustic system designed to detect and differentiate between four distinct vocalizations of broiler chickens-pleasure notes, distress calls, short peeps, and warbles-while filtering out background noise and other vocalizations. The vocalization detector is designed as a convolutional neural network with 11 two-dimensional convolutional layers and one one-dimensional convolutional layer. For training, a manually labeled vocalization library was built (>2k samples, with a total duration of 190 minutes), based on a large set of continuous audio recordings of ten male Ross 308 broiler chicks aged from 1 to 36 days. An extension with a subset of the AudioSet dataset was made to include background sounds. With this library, an overall balanced accuracy of 91.1 % was achieved by the neural network-based recognizer.

摘要

家禽业依赖于高效的生产系统。对于可持续食品生产而言,维持肉鸡福利至关重要,拥有强大的数据收集系统以及评估肉鸡健康和福利的自动化方法必不可少。本文介绍了一种声学系统的开发与实施,该系统旨在检测并区分肉鸡的四种不同叫声——愉悦叫声、 distress calls、短啁啾声和颤音,同时滤除背景噪音和其他叫声。叫声检测器设计为一个具有11个二维卷积层和1个一维卷积层的卷积神经网络。为了进行训练,基于对10只1至36日龄的雄性罗斯308肉鸡雏鸡的大量连续音频记录,构建了一个人工标注的叫声库(>2000个样本,总时长190分钟)。通过扩展AudioSet数据集的一个子集来纳入背景声音。利用这个库,基于神经网络的识别器实现了91.1%的总体平衡准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a935/11960626/909c96272b4b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验