Suppr超能文献

从声音中解码家禽福利——一种用于非侵入式声学监测的机器学习框架

Decoding Poultry Welfare from Sound-A Machine Learning Framework for Non-Invasive Acoustic Monitoring.

作者信息

Manikandan Venkatraman, Neethirajan Suresh

机构信息

Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada.

Faculty of Agriculture, Dalhousie University, Halifax, NS B3H 4R2, Canada.

出版信息

Sensors (Basel). 2025 May 5;25(9):2912. doi: 10.3390/s25092912.

Abstract

Acoustic monitoring presents a promising, non-invasive modality for assessing animal welfare in precision livestock farming. In poultry, vocalizations encode biologically relevant cues linked to health status, behavioral states, and environmental stress. This study proposes an integrated analytical framework that combines signal-level statistical analysis with machine learning and deep learning classifiers to interpret chicken vocalizations in a welfare assessment context. The framework was evaluated using three complementary datasets encompassing health-related vocalizations, behavioral call types, and stress-induced acoustic responses. The pipeline employs a multistage process comprising high-fidelity signal acquisition, feature extraction (e.g., mel-frequency cepstral coefficients, spectral contrast, zero-crossing rate), and classification using models including Random Forest, HistGradientBoosting, CatBoost, TabNet, and LSTM. Feature importance analysis and statistical tests (e.g., -tests, correlation metrics) confirmed that specific MFCC bands and spectral descriptors were significantly associated with welfare indicators. LSTM-based temporal modeling revealed distinct acoustic trajectories under visual and auditory stress, supporting the presence of habituation and stressor-specific vocal adaptations over time. Model performance, validated through stratified cross-validation and multiple statistical metrics (e.g., F1-score, Matthews correlation coefficient), demonstrated high classification accuracy and generalizability. Importantly, the approach emphasizes model interpretability, facilitating alignment with known physiological and behavioral processes in poultry. The findings underscore the potential of acoustic sensing and interpretable AI as scalable, biologically grounded tools for real-time poultry welfare monitoring, contributing to the advancement of sustainable and ethical livestock production systems.

摘要

声学监测为精准畜牧业中评估动物福利提供了一种有前景的非侵入性方法。在家禽中,发声编码了与健康状况、行为状态和环境压力相关的生物学相关线索。本研究提出了一个综合分析框架,将信号级统计分析与机器学习和深度学习分类器相结合,以便在福利评估背景下解读鸡的叫声。该框架使用了三个互补数据集进行评估,这些数据集涵盖了与健康相关的叫声、行为叫声类型以及应激诱导的声学反应。该流程采用多阶段过程,包括高保真信号采集、特征提取(例如,梅尔频率倒谱系数、频谱对比度、过零率)以及使用包括随机森林、直方图梯度提升、CatBoost、TabNet和长短期记忆网络(LSTM)在内的模型进行分类。特征重要性分析和统计测试(例如,t检验、相关指标)证实,特定的梅尔频率倒谱系数频段和频谱描述符与福利指标显著相关。基于长短期记忆网络的时间建模揭示了视觉和听觉应激下不同的声学轨迹,支持随着时间推移存在习惯化和应激源特异性发声适应。通过分层交叉验证和多个统计指标(例如,F1分数、马修斯相关系数)验证的模型性能显示出高分类准确率和泛化能力。重要的是,该方法强调模型可解释性,便于与家禽已知的生理和行为过程保持一致。研究结果强调了声学传感和可解释人工智能作为用于实时家禽福利监测的可扩展、基于生物学的工具的潜力,有助于可持续和符合伦理的畜牧生产系统的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40fa/12074417/7cc5b144b7f9/sensors-25-02912-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验